HP20 HP30 Dual fuel burners Progressive - Fully modulating Gas - light oil burners **MANUAL OF INSTALLATION - USE - MAINTENANCE** BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### DANGERS, WARNINGS AND NOTES OF CAUTION # THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things: - Failure to comply with one of the WARNINGS in this chapter - Incorrect handling, installation, adjustment or maintenance of the burner - Incorrect use of the burner or incorrect use of its parts or optional supply #### 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains - b Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### Special warnings - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance; - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. # 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - -do not touch the unit with wet or damp parts of the body and/or with bare feet: - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type: - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room: - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of
toxic or explosive mixtures. #### **DIRECTIVES AND STANDARDS** #### Gas burners #### European directives - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Light oil burners #### **European directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267-2011(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Heavy oil burners #### **European Directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Gas - Light oil burners #### **European Directives** - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); #### Gas - Heavy oil burners #### **European directives:** - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electri- - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); #### Industrial burners ### European directives - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 746-2 (Industrial thermoprocessing equipment Part 2: Safety requirements for combustion and fuel handling systems) - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements) #### Burner data plate For the following information, please refer to the data plate: - burner type and burner model: must be reported in any communication with the supplier - burner ID (serial number): must be reported in any communication with the supplier - date of production (year and month) - information about fuel type and network pressure | ype | | |-------------|---| | 1odel | | | 'ear | - | | .Number | | | Output | | | il Flow | | | uel | - | | ategory | | | as Pressure | | | iscosity ' | | | I.Supply | | | I.Consump. | | | an Motor | | | rotection | | | rwaing n° | - | | l.I.N. | | #### SYMBOLS USED **WARNING!** Failure to observe the warning may result in irreparable damage to the unit or damage to the environment DANGER! Failure to observe the warning may result in serious injuries or death. **WARNING!** Failure to observe the warning may result in electric shock with lethal consequences Figures, illustrations and images used in this manual may differ in appearance from the actual product. #### **BURNER SAFETY** The burners - and the configurations described below - comply with the regulations in force regarding health, safety and the environment. For more in-depth information, refer to the declarations of conformity that are an integral part of this Manual. DANGER! Incorrect motor rotation can seriously damage property and injure people. # Residual risks deriving from misuse and prohibitions The burner has been built in order to make its operation safe; there are, however, residual risks. Do not touch any mechanical moving parts with your hands or any other part of your body. Injury hazard Do not touch any parts containing fuel (i.e. tank and pipes). Scalding hazard Do not use the burner in situations other than the ones provided for in the data plate. Do not use fuels other than the ones stated. Do not use the burner in potentially explosive environ- Do not remove or by-pass any machine safety devices. Do not remove any protection devices or open the burner or any other component while the burner is running. Do not disconnect any part of the burner or its components while the burner is running. Untrained staff must not modify any linkages. After any maintenance, it is important to restore the protection devices before restarting the machine. All safety devices must be kept in perfect working order. Personnel authorized to maintain the machine must always be provided with suitable protections. ATTENTION: while running, the parts of the burner near the generator (coupling flange) are subject to overheating. Where necessary, avoid any contact risks by wearing suitable PPE. #### **PART I: INSTALLATION** #### **GENERAL FEATURES** This series represents monobloc gas burners made in die-cast aluminium housing, that can burn either gas or light oil, thanks to the adjustable combustion head which allows a good performance with both fuels. They can be provided in progressive or fully-modulating version. **Gas operation:** the gas coming from the supply line, passes through the valves group provided with filter and stabiliser. This one forces the pressure in the utilisation limits. The actuator moves proportionally the air damper and the gas butterfly valve It drives an adjusting cam with variable shape. This one allows the optimisation of the gas flue values, as to get an efficient combustion. **Light oil operation:** the fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame. In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle. The pump main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure regulators: one for the high and one for low pressure (in double-stage systems with one nozzle). The adjustable combustion head can improve the burner performance. The combustion head determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber). The control panel, placed on the burner front side, shows each operating stage. # How to interpret the burner
"Performance curve" To check if the burner is suitable for the boiler to which it must be installled, the following parameters are needed: - furnace input, in kW or kcal/h (kW = kcal/h / 860); - backpressure (data are available on the boiler's ID plate or in the user's manual). Example: Furnace input: 600kW Backpressure: 4mbar In the "Performance curve" diagram (Fig. 1), draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve. Fig. 1 Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C ## Checking the proper gas train size To check the proper gas train size, it is necessary to know the available gas pressure value upstream the burner's gas valve. Then subtract the backpressure. The result is called **pgas**. Draw a vertical line matching the furnace input value (600kW, in the example), quoted on the x-axis, as far as intercepiting the network pressure curve, according to the installed gas train (DN65, in the example). From the interception point, draw an horizontal line as far as matching, on the y-axis, the value of pressure necessary to get the requested furnace input. This value must be lower or equal to the **pgas** value, calculated before. Fig. 2 ### Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube length follow the instructions of the boiler manufacturer. In absence of these consider the following: - Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than 100 mm into the combustion chamber. - Pressurised boilers with flame reversal: in this case the blast tube must penetrate at least 50 100 mm into combustion chamber in respect to the tube bundle plate. The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer). ## Key - a) Heat output in kW - b) Lenght of the flame tube in meters - c) Flame tube firing intensity in MW/m³ - d) Combustion chamber diameter (m) Fig. 3 - Firing intensity, diameter and lenght of the test flame tube as a function of the heat input in kW. # **Burner model identification** Burners are identified by burner type and model. Burner model identification is described as follows. | Type HP20 Model MG . PR . S . *. (1) (2) (3) (4) (5) | A. 0. 25 (6) (7) (8) | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--| | (1) BURNER TYPE | HP20 - HP30 | | | | | | | | | | | (2) FUEL | MG - Natural gas-Light oil, BG - Biogas-Light oil, LG - LPGLight oil | | | | | | | | | | | (3) OPERATION (Available versions) PR - Progressive MD - Fully modulating | | | | | | | | | | | | (4) BLAST TUBE | S - Standard L - Extended | | | | | | | | | | | (5) DESTINATION COUNTRY | * - see data plate | | | | | | | | | | | (6) BURNER VERSION | A - Standard, Y - Special | | | | | | | | | | | (7) EQUIPMENT | 0 = 2 gas valves 1 = 2 gas valves + gas proving system 7 = 2 gas valves + max. pressure switch 8 = 2 gas valves + gas proving system + max. pressure switch | | | | | | | | | | | (8) GAS CONNECTION | 25 = Rp1 32 = Rp1 _{1/4} | | | | | | | | | | # **Specifications** | BURNER TYPE | | HP20 MG | HP30 MG | HP20 BG | HP30 BG | HP20 LG | HP30 LG | | | |------------------------------|------------------------------|-----------------------|--|-----------------|--|----------------|--|--|--| | Output | min max. kW | 85 - 230 | 65 - 350 | 85 - 230 | 65 - 350 | 85 - 230 | 65 - 350 | | | | Fuel | | Natural ga | s - Light oil | BG - Bioga | s - Light oil | L.P.G | L.P.G Light oil | | | | Gas category | | | (see next | paragraph) | | l ₃ | B/P | | | | Gas rate | minmax. min max.
(Stm³/h) | 9 - 24 | 7 - 37 | - | - | - | - | | | | Gas pressure M- | min max. mbar | | | (see N | lote 2) | | | | | | Gas rate- LPG | min max. kg/h | - | - | - | - | 3,2 - 8,6 | 2,4 - 13,1 | | | | Biogas rate | min max. kg/h | | - | 13,3 - 36 | 10,2 - 55 | | | | | | Light oil rate | min max. kg/h | 7,2 - 19,4 | 5,5 - 29,5 | 7,2 - 19,4 | 5,5 - 29,5 | 7,2 - 19,4 | 5,5 - 29,5 | | | | Oil viscosity | | 2 - 7.4 cSt @ 40°C | | | | | | | | | Oil density | | 840 kg/m ³ | | | | | | | | | Power supply | | 230V 1N ~ 50Hz | | | | | | | | | Total power consumption | kW | 0.85 | | | | | | | | | Electric motor | kW | | | 0. | 37 | | | | | | Pump motor | kW | | | 0. | 18 | | | | | | Protection | | | | IP | 40 | | | | | | Approx. weight | kg | | | 6 | 0 | | | | | | Operation | | | ! | Progressive - F | ully modulating | g | | | | | Gas Train Rp1 | | 1" / Rp1 | - | 1" / Rp1 | - | 1" / Rp1 | - | | | | Gas Train Rp1 _{1/4} | Valves size / Gas connection | - | 1" _{1/4} / Rp1 _{1/4} | - | 1" _{1/4} / Rp1 _{1/4} | - | 1" _{1/4} / Rp1 _{1/4} | | | | Gas Train Rp1 _{1/2} | - Connocion | - | 1" _{1/2} / Rp1 _{1/2} | - | 1" _{1/2} / Rp1 _{1/2} | - | 1" _{1/2} / Rp1 _{1/2} | | | | Operating temperature | °C | | • | -10 ÷ | +50 | • | • | | | | Storage Temperature | °C | | | -20 ÷ | +60 | | | | | | Working service** | | Intermittent | | | | | | | | # * NOTE ON THE BURNER WORKING SERVICE - Siemens LGB..: for safety reasons, one controlled shutdown must be performed every 24 hours of continuous operation. - Siemens LME..: the control box automatically stops after 24h of continuous working. The control box immediately starts up, automatically. # Country and usefulness gas categories | GAS
CATEGORY | | | | | | | | | | | | CC | UNT | RY | | | | | | | | | | | | |---------------------|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----| | I _{2H} | АТ | ES | GR | SE | FI | ΙE | HU | IS | NO | CZ | DK | GB | IT | PT | CY | EE | LV | SI | МТ | SK | BG | LT | RO | TR | СН | | l _{2E} | LU | PL | 1 | 1 | - | - | 1 | - | - | - | - | 1 | 1 | 1 | - | 1 | 1 | - | - | - | 1 | - | 1 | 1 | - | | I _{2E(R)B} | BE | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 | - | - | - | - | - | 1 | 1 | - | | I _{2L} | NL | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | 1 | 1 | - | - | 1 | - | - | - | - | - | 1 | 1 | - | | I _{2ELL} | DE | - | | | - | | l _{2Er} | FR | - | - | - | | - | - | - | - | - | - | | - | - | - | - | | - | - | - | - | - | - | - | - | #### Fuel The burner technical specifications, described in this manual, refer to natural gas (calorific net value Hi = 9.45 kWh/Stm^3 , density $\rho = 0.717 \text{ Kg/Stm}^3$). For different fuel such as LPG, town gas and biogas, multiply the values of flow and pressure by th corrective factors shown in the table below. | Fuel | Hi (KWh/Stm ³) | ρ (kg/Stm³) | f_Q | f _p | |----------|----------------------------|--------------------|-------|----------------| | LPG | 26.79 | 2.151 | 0.353 | 0.4 | | Town gas | 4.88 | 0.6023 | 1.936 | 3.3 | | Biogas | 6.395 | 1.1472 | 1.478 | 3.5 | For example, to obtain the flow and pressure values for the biogas: $Q_{biogas} = Q_{naturalGas} \cdot 1,478$ $p_{biogas} = p_{naturalGas} \cdot 3, 5$ ATTENTION! The combustion head type and the settings depend on the fuel. The burner must be used only for its intended purpose specified in the burner data plate . ATTENTION! The corrective factors in the above table depend on the gas composition, so on the calorifc value and the density of the gas. The above value can be taken only as reference. # Overall dimensions (mm) | | Α | B(*S) | B(*L) | C(*S) | C(*L) | D | Е | F | G | Н | J | K | L | М | N | Р | Y | |------|-----|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | HP20 | 555 | 173 | 258 | 728 | 813 | 510 | 320 | 830 | 126 | 151 | 178 | 290 | 360 | M10 | 370 | 155 | 131 | | HP30 | 555 | 300 | - | 855 | - | 510 | 320 | 830 | 150 | 162 | 178 | 290 | 360 | M10 | 490 | 155 | 133 | ^{*}S = measure referred to burner fitted with standard blast tube B*: SPECIAL blast tube lengths must be agreed with Cib Unigas ^{*}L = measure referred to burner fitted with extended blast tube #### Performance Curves To get the input in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C. **NOTE:** The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjusting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the
combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum. ### Pressure in the Network / gas flow rate curves (natural gas) WARNING: the diagrams refers to natural gas. For different type of fuel please refer to the paragraph "Fuel" at the beginning of this chapter. Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis. #### MOUNTINGS AND CONNECTIONS #### **Packing** Burners are despatched in cardboard packages whose dimensions are: 1280mm x 850mm x 760mm (L x P x H) Packing cases of this kind are affected by humidity and are not suitable for stacking. The following are placed in each packing case: - burner with gas train detached; - gasket to be inserted between the burner and the boiler; - flexible oil pipes; - oil filter; - envelope containing this manual To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials # Handling the burner ATTENTION! The handling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck. The burner is mounted on a stirrup provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler. # Fitting the burner to the boiler To install the burner into the boiler, proceed as follows: - 1 make a hole on the closing door of the combustion chamber as described on paragraph "Overall dimensions"; - 2 place the burner to the boiler: lift it up and handle it according to the procedure described on paragraph "Handling the burner"; - 3 place the 4 stud bolts (5) on the hole of the boiler's door, according to the burner's drilling plate described on paragraph "Overall dimensions"; - 4 fasten the 4 stud bolts; - 5 place the gasket on the burner flange; - 6 install the burner into the boiler; - 7 fix the burner to the stud bolts, by means of the fixing nuts, according to the next picture. - 8 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). # Keys - 1 Burner - 2 Fixing nut - 3 Washer - 4 Sealing gasket - 5 Stud bolt - 7 Blast tube The burner is designed to work positioned according to the picture below. For different installations, please contact the Technical Department. # Gas train connections The next diagrams show the components of the gas train included in the delivery and which must be fitted by the installer. The diagrams are in compliance with the current laws. **ATTENTION:** BEFORE EXECUTING THE CONNECTIONS TO THE GAS PIPE NETWORK, BE SURE THAT THE MANUAL CUTOFF VALVES ARE CLOSED. READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNING OF THIS MANUAL. Gas train with valves group MB-DLE with built-in gas pressure governor+ VPS504 gas proving system # Key - 1 Burner - 2 Butterfly valve - 3 Gas proving system (option) - 4 Maximum gas pressure switch (optional*) - 5 Minimum gas pressure switch - 6 Gas filter - 7 Bellow joint - 8 Manual cutoff valve - 9 MB-DLE Valves group ^{*} Note: the maximum gas pressure switch can be mounted either upstream or downstream the gas valve but upstream the butterfly gas valve (see item no.4 in the scheme above). # Assembling the gas grain Fig. 4 - Example of gas train To mount the gas train, proceed as follows: - 1) in case of threaded joints: use proper seals according to the gas used; - 2) fasten all the elements by means of screws, according to the schemes shown, observing the mounting directions for each element. NOTE: the bellow joint, the manual cock and the gaskets are not part of the standard supply. **ATTENTION:** once the gas train is mounted according to the diagram on Fig. 4, the gas proving test mus be performed, according to the procedure set by the laws in force. ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves). The procedures of installation fo the gas valves are showed in the next paragraphs, according to the gas train used: threaded gas trains with Multibloc Dungs MB-DLE # MULTIBLOC DUNGS MB-DLE 405..412 # Mounting - 1. Mount flange onto tube lines: use appropriate sealing agent (see Fig. 7); - 2. insert MB-DLE: note position of O rings (see Fig. 7); - 3. tighten screws A, B, C and D (Fig. 5 Fig. 6), according to the mounting positions (Fig. 8); - 4. after installation, perform leakage and functional test; - 5. disassembly in reverse order. Once the train is installed, connect electrically all its elements: gas valves group, pressure switches, gas proving system. **ATTENTION:** once the gas train is mounted according to the diagram on Fig. 4, the gas proving test mus be performed, according to the procedure set by the laws in force. # Hydraulic diagrams for light oil supplying circuits **Key** 1 2 3 5 NOTE: in plants where gravity or ring feed systems are provided, install an automatic interception device (see n. 4 - Fig. 12). # Light oil piping installation diagram cause pump breaks. #### Key - 1 Burner - 2 Flexible hoses (fitted) - 3 Light oil filter (fitted) - 4 Automatic interceptor (*) - 5 One-way valve (*) - 6 Gate valve - 7 Quick-closing gate-valve (not in vicinity of tank or boiler) (*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing. The direct connection of the device without a timer may The pumps that are used can be installed both into single-pipe and double-pipe systems. **Single-pipe system:** a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. **Double-pipe system:** as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-ble-eding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug **G** (as for ccw-rotation-referring to the pump shaft). Caution: Changing the direction of rotation, all connections on top and side are reversed. #### Bleed Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system. #### About the use of fuel pumps - Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result. - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream of the fuel unit. • # Light oil pumps # **Pump Suntec AL65** | Viscosity range | 2 ÷ 12 (cSt) mm²/s | |-------------------------|---------------------------| | Oil temperature | 0 ÷ 60 °C | | Inlet pressure | 2 bar | | Minimum inlet pressure | - 0,45 barto avoid gasing | | Maximum return pressure | 2 bar | | Rated speed | 3600 rpm | ### Keys - 1 inlet (suction) G1/4 - 2 return and internal by-pass plug G1/4 - 3 outlet to the
nozzle G1/8 - 4 pressure gauge port G1/8 - 5 vacuum gauge port G1/8 - 6 pressure adjusting screw # Connecting the light oil flexible hoses To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided: - 1 remove the closing nuts **A** and **R** on the inlet and return connections of the pump; - screw the rotating nut of the two flexible hoses on the pump **being careful to avoid exchanging the inlet and return lines**: see the arrows marked on the pump that show the inlet and the return (see prevoius paragraph). #### Electrical connections Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. ATTENTION: before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section. WARNING: The burner is provided with a jumper between terminals 6 and 7; in the event of connecting the high/low flame thermostat remove this jumper before connecting the thermostat. IMPORTANT: while connecting electric supply wires to burner's teminal block be sure that ground wire should be longer than phase and neutral ones. WARNING: if the cable that connects the thermostats and the LME.. control box should be longer than 3 meters, insert a sectioning relay following the attached electrical wiring diagram. To execute the electrical connections, proceed as follows: - 1 remove the cover from the electrical board, unscrewing the fixing screws; - 2 execute the electrical connections to the supply terminal board as shown in the attached wiring diagrams; - 3 check the direction of the fan motor (see next paragraph); - 4 refit the panel cover. ## Fan motor and pump motor direction Once the electrical connection of the burner is executed, remember to check the rotation of the fan motor. The motor should rotate according to the "arrow" symbol on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor. CAUTION: check the motor thermal cut-out adjustment #### **ADJUSTMENTS** # Combustion head gas pressure curves depending on the flow rate #### Curves are referred to pressure = 0mbar in the combustion head! The curves referred to the gas pressure in the combustion head, depending on the gas flow rate, are referred to the burner properly adjusted (percentage of residual O_2 in the flues as shown in the "Recommended combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the actuator are at the maximum opening. Refer to Fig. 13, showing the correct way to measure the gas pressure, considering the values of pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications. Fig. 13 #### Key - 1 Generator - 2 Pressure outlet on the combustion chamber - 3 Gas pressure outlet on the butterfly valve - 4 Differential pressure gauge # Measuring the gas pressure in the combustion head In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner. On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on the next paragraph), it is easy to find out the burner's output in Stm³/h (quoted on the x axis) from the pressure measured in the combustion head (quoted on the y axis). The data obtained must be considered when adjusting the gas flow rate. NOTE: THE PRESSURE-RATE CURVES ARE GIVEN AS INFORMATION ONLY; FOR A PROPER SETTING OF THE GAS RATE, PLEASE REFER TO THE GAS METER READING. ### Pressure - rate in combustion head curves (natural gas) Curves are referred to pressure = 0 mbar in the combustion chamber! WARNING: the diagrams refers to natural gas. For different type of fuel please refer to the paragraph "Fuel" at the beginning of this chapter. ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed. .ATTENTION: During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the gas decrease slowly until the normal combustion values are achieved. WARNING: NEVER LOOSE THE SEALED SCREWS! OTHERWISE, THE DEVICE WARRANTY WILL BE IMMEDIATELY INVALIDATE! #### Gas Filter The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burners, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices. #### VPS504 Gas proving system The VPS504 check the operation of the seal of the gas shut off valves. This check is carried out as soon as the boiler thermostat gives a start signal to the burner, creating, by means of the diaphragm pump inside it, a pressure in the test space of 20 mbar higher than the supply pressure. When wishing to monitor the test, install a pressure gauge ranged to that of the pressure supply point PA. If the test cycle is satisfactory, after a few seconds the consent light LC (yellow) comes on. In the opposite case the lockout light LB (red) comes on. To restart it is necessary to reset the appliance by pressing the illuminated pushbutton LB. ### IMPORTANT! the combustion air excess must be adjusted according to the in the following chart: | Recommended combustion parameters | | | | | | | | | | | |-----------------------------------|---------------------------------|--------------------------------|--|--|--|--|--|--|--|--| | Fuel | Recommended (%) CO ₂ | Recommended (%) O ₂ | | | | | | | | | | Natural gas | 9 ÷ 10 | 3 ÷ 4.8 | | | | | | | | | | Light oil | 11.5 ÷ 13 | 2.9 ÷ 4.9 | | | | | | | | | ### Adjustments - brief description Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively. - Check that the combustion parameters are in the suggested limits. - Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. see "Measuring the gas pressure in the combustion head" on page 17. - Then, adjust the combustion values corresponding to the points between maximum and minimum: set the shape of the adjusting cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the throttle gas valve. - Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. # Adjustment procedure for gas operation - 1 Set GAS fuel by means of the burner CM switch (it is placed on the burner control panel see page 27) - Only for burners provided with **Multibloc MB-DLE gas valves:** before starting the burner up, set the slow opening. To set the slow opening, remove cover **T**, reverse it upside down and use it as a tool to rotate screw **VR**. Clockwise rotation reduces start flow rate, anticlockwise rotation increases it. Do not use a screwdriver on the screw **VR**! Note: the screw VSB must be removed only in case of replacement of the coil. #### Attention: - Beger actuator: cams can be moved manually - Siemens actuator: set the MAN/AUTO lever to MAN to move the cams, remember to set it to AUTO once the adjustment is accomplished. - 3 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage. - 4 Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the burner starts up; - 5 drive the burner to high flame stage, by means fo the thermostat **TAB** (high/low flame thermostat see Wiring diagrams), as far as fully-modulating burners, see related paragraph. - Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the gas by means of the valves group governor. - 7 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps quoted below; - acting on the pressure stabiliser of the valves group, adjust the **gas flow rate in the high flame stage** as to meet the values requested by the boiler/utilisation: **Dungs MBC..SE valves group:** act on its pressure governor to increase or decrease the pressure and consequently the gas rate.: **Dungs Multibloc MB-DLE** Fig. 15 To adjust the air flow rate in the high flame stage, loose the RA nut and screw VRA as to get the desired air flow rate: moving the rod TR towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases. Note: once the procedure is performed, be sure that the blocking nut RA is fasten. Do not change the position of the air damper rods. 10 The burner is factory-set with the head in its MAX position (maximum output). To let the burner operate at a lower output, turn clockwise the **VRT** screw and move progressively the combustion head back
towards the MIN position. "MAX" head position "MIN" head position Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above. - 11 the air and gas rate are now adjusted at the maximum power stage, go on with the point to point adjustement on the **SV1** (gas side) adjusting cam as to reach the minimum output point. - 12 as for the point-to-point regulation, move the low flame microswitch a little lower than the maximum position (90°); - 13 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position (as far as fully-modulating burners, see the related paragraph); - move the low flame cam to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V1** to increase the rate, unscrew to decrease. Gas throttle valve open Gas throttle valve closed 15 Move again cam III towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point. Now adjust the pressure switches (see next par.). # Calibration of air and gas pressure switches The **air pressure switch** locks the control box if the air pressure is not the one requested. If it happens, unlock the burner by means of the control box unlock pushbutton, placed on the burner control panel. The **gas pressure switches** check the pressure to avoid the burner operate when the pressure value **VR** is not in the requested pressure range. # Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: - Remove the transparent plastic cap. - Once air and fuel setting have been accomplished, startup the burner. - During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%. - Repeat the ignition cycle of the burner and check it runs properly. - Refit the transparent plastic cover on the pressure switch. #### Calibration of low gas pressure switch As for the gas pressure switch calibration, proceed as follows: - Be sure that the filter is clean. - Remove the transparent plastic cap. - While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch. - Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the limits laid down by law, slowly open the cutoff valve as to get values lower than these limits. - Check that the burner is operating correctly. - Clockwise turn the pressure switch adjusting ring nut (as to increase the pressure value) until the burner stops. - Slowly fully open the manual cutoff valve. - Refit the transparent plastic cover on the pressure switch. ### Adjusting the maximum gas pressure switch (when provided) To calibrate the maximum pressure switch, proceed as follows according to its mounting position: - 1 remove the pressure switch plastic cover; - if the maximum pressure switch is mounted upstreaam the gas valves: measure the gas pressure in the network, when flame is off; by means of the adjusting ring nut **VR**, set the value read, increased by the 30%. - if the maximum pressure switch is mounted downstream the "gas governor-gas valves" group and upstream the butterfly valve: light the burner, adjust it according to the procedure in the previous paragrph. Then, measure the gas pressure at the operating flow rate, downstream the "gas governor-gas valves" group and upstream the butterfly valve; by means of the adjusting ring nut **VR**, set the value read on step 2, increased by the 30%; 4 replace the plastic cover. # Fully modulating burners To adjust the fully-modulating burners, use the **CMF** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**. The **CMF** position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set CMF=2. To move the adjusting cam set CMF=1 or 2 and then CMF=0. CMF = 0 stop at the current position CMF = 1 high flame operation CMF = 2 low flame operation CMF = 3 automatic operation # Adjustment procedure for light oil operation The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the table below (as far as reading the pressure values, see next paragraphs). | NOZZLE | DELIVERY
PRESSURE
bar | RETURN
PRESSURE MAX.
bar | RETURN
PRESSURE MIN.
bar | |-------------|-----------------------------|--------------------------------|--------------------------------| | MONARCH BPS | 20 | see the table | see the table | | BERGONZO A | 20 | 13-19 | 6 (recommended) | | | RETURN PRESSURE bar | | | | | | | | | | | | | | |-------------------------|---------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | Nozzle
size
(GPH) | 0 | 1,4 | 2,8 | 4,1 | 5,5 | 6,9 | 8,3 | 9,6 | 11 | 12,4 | 13,8 | 15,2 | Flow rate in kg/h with
close return | Pressure with close return to
use in the nozzle choice) | | 0,75 | 1,3 | 1,6 | 2,1 | 2,5 | | | | | | | | | 3,2 | 5,5 | | 1,0 | 2,1 | 2,1 | 2,4 | 3,0 | 3,7 | 4,6 | 5,2 | | | | | | 5,4 | 8,6 | | 1,5 | 2,9 | 3,0 | 3,3 | 4,1 | 4,9 | 6,0 | 7,0 | | | | | | 7,9 | 9,3 | | 2,0 | 4,6 | 5,1 | 5,4 | 6,4 | 7,5 | 8,7 | 9,9 | | | | | | 10,5 | 9,3 | | 2,5 | 3,5 | 4,1 | 4,9 | 5,9 | 7,5 | 9,1 | 10,8 | 12,4 | | | | | 13,5 | 10,7 | | 3,0 | 5,6 | 5,9 | 6,2 | 7,2 | 8,7 | 10,0 | 11,9 | 13,8 | | | | | 15,3 | 11,0 | | 3,5 | 7,0 | 7,2 | 7,8 | 8,7 | 9,9 | 11,3 | 12,4 | 13,7 | 18,4 | | | | 19,7 | 12,1 | | 4,0 | 7,8 | 7,9 | 8,3 | 8,6 | 10,3 | 11,6 | 13,0 | 14,1 | 17,3 | 20,2 | | | 21,0 | 12,8 | | 4,5 | 9,2 | 9,4 | 10,0 | 11,0 | 11,9 | 12,9 | 14,3 | 15,3 | 17,2 | 24,5 | | | 24,8 | 14,1 | | 5,0 | 10,8 | 11,0 | 11,3 | 11,6 | 13,0 | 14,3 | 15,6 | 17,0 | 18,6 | 24,3 | | | 26,2 | 13,4 | | 5,5 | 9,7 | 10,0 | 10,2 | 11,1 | 12,1 | 13,4 | 14,8 | 16,4 | 18,1 | | | | 29,7 | 12,4 | | 6,0 | 9,2 | 9,5 | 9,9 | 10,0 | 10,8 | 12,4 | 14,1 | 15,7 | 17,5 | 18,9 | 29,3 | | 33,1 | 14,8 | | 6,5 | 10,5 | 10,8 | 11,1 | 11,4 | 12,1 | 13,8 | 15,3 | 16,5 | 18,4 | 20,0 | 22,4 | 36,2 | 36,7 | 15,5 | | 7,0 | 8,7 | 9,4 | 10,0 | 11,4 | 13,2 | 14,9 | 17,2 | 19,6 | 23,1 | 25,1 | 33,2 | | 33,7 | 15,2 | | 7,5 | 11,3 | 11,8 | 10,3 | 13,0 | 14,3 | 15,3 | 17,2 | 19,2 | 21,8 | 24,2 | 30,4 | | 39,3 | 14,1 | | 8,0 | 9,9 | 9,9 | 10,2 | 11,3 | 12,6 | 14,3 | 16,1 | 18,4 | 21,1 | 24,3 | | | 39,7 | 13,8 | | 9,0 | 10,8 | 11,0 | 11,1 | 12,6 | 14,5 | 16,1 | 18,8 | 21,8 | 25,1 | 28,9 | | | 45,9 | 13,8 | | 9,5 | 11,4 | 11,6 | 12,2 | 13,7 | 15,3 | 17,3 | 19,7 | 23,2 | 26,5 | 30,0 | 33,5 | | 49,1 | 14,5 | | 10,5 | 11,6 | 11,6 | 12,2 | 13,7 | 15,4 | 17,6 | 20,7 | 24,0 | 27,3 | 31,2 | 35,5 | | 50,9 | 15,2 | | 12,0 | 13,7 | 14,0 | 14,3 | 15,6 | 18,1 | 21,9 | 25,8 | 30,2 | 34,7 | 39,7 | 44,5 | | 61,7 | 14,5 | | 13,8 | 13,4 | 13,4 | 13,7 | 15,6 | 18,1 | 23,2 | 28,3 | 34,7 | 41,0 | 47,7 | 54,7 | | 71,2 | 15,2 | | 15,3 | 16,5 | 16,9 | 17,2 | 18,4 | 20,7 | 23,8 | 28,3 | 33,1 | 36,9 | 44,5 | 51,8 | | 76,0 | 15,2 | | 17,5 | 21,6 | 21,9 | 21,9 | 23,2 | 25,8 | 29,6 | 34,7 | 40,7 | 46,4 | 54,0 | 62,3 | 71,2 | 89,7 | 15,5 | | 19,5 | 19,7 | 20,0 | 20,3 | 21,3 | 23,8 | 28,0 | 32,7 | 39,7 | 47,1 | 55,3 | 66,4 | 75,0 | 97,3 | 16,2 | | 21,5 | 24,8 | 24,8 | 25,1 | 26,1 | 28,3 | 33,4 | 37,8 | 45,1 | 53,1 | 61,7 | 73,8 | 83,9 | 106,5 | 16,6 | | 24,0 | 26,7 | 27,0 | 27,7 | 29,3 | 31,8 | 36,6 | 45,8 | 55,0 | 65,5 | 77,3 | 90,9 | 106,2 | 111,6 | 15,9 | | 28,0 | 28,6 | 28,9 | 30,5 | 35,3 | 43,6 | 42,1 | 67,1 | 85,5 | 107,1 | 127,8 | 151,7 | | 154,8 | 14,8 | | 30,0 | 25,8 | 25,8 | 28,6 | 35,9 | 43,2 | 56,3 | 73,8 | 90,6 | 102,4 | 120,8 | 144,0 | 160,9 | 164,1 | 15,5 | | 35,0 | 34,3 | 35,0 | 40,7 | 49,9 | 63,6 | 82,7 | 103,6 | 122,1 | 145,9 | 120,8 | | | 186,0 | 13,8 | | 40,0 | 52,8 | 53,1 | 60,4 | 70,6 | 86,8 | 106,5 | 128,8 | 149,7 | 179,6 | 172,6 | | | 217,2 | 13,1 | | 45,0 | 73,4 | 73,4 | 83,0 | 93,5 | 112,2 | 134,5 | 157,7 | 185,0 | 225,7 | 209,8 | | | 242,3 | 12,4 | | 50,0 | 92,5 | 94,4 | 104,6 | 118,9 | 139,9 | 167,2 | 196,8 | 231,8 | 263,3 | | | | 266,8 | 11,4 | # N.B. Specific gravity of the light oil: 0.840kg/dm³ **Example:** If the nozzle provided is mod. MONARCH 10.5 GPH, when the return pressure is 13.8 bar, the flow rate will be 35.5kg/h (see the table above). If the return pressure is 13.80bar (with the same nozzle), the flow rate value will be about 15.4kg/h. The flow rate in the High-flame operation is related to the nozzle provided with close return. **Example (Bergonzo):** if a 140kg/h flow rate BERGONZO 45° nozzle is provided, set the return pressure at 13bar, supply at 20bar on the delivery to get a 110kg/h flow rate. If the return pressure needed is 5bar, instead, act on the adjusting screw on the pressure governor. The flow rate will then be about 55kg/h (see the example showed on the Bergonzo diagram). # Oil Flow Rate Settings - record the high flame value set during the gas operation adjustments (see previous paragraphs). - Once the air and gas flow rates are adjusted, turn the burner off, switch the CM switch to the oil operation (OIL, on the burner control panel (see page 27). - bleed the air from the M pressure gauge port (Fig. 16) by
loosing the cap without removing it, then release the contactor. 3 Fig. 17 - Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the bruner starts - drive the burner to high flame stage, by means fo the thermostat TAB (as far as fully-modulating burners, see the related paragraph). #### Attention: - Berger actuator: cams can be moved manually - Siemens actuator: set the MAN/AUTO lever to MAN to move the cams, remember to set it to AUTO once the adjustment is accomplished. the nozzle supply pressure is already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 17 and act on on the pump adjusting screw VR (see Fig. 18) as to get the nozzle pressure at 20bar (see table on page 23). in order to get the maximum oil flow rate, adjust the pressure (reading its value on the PG pressure gauge) without changing the air flow rate set during the gas operation adjustments (see previous paragraph): checking always the combustion parameters, the adjustment is to - be performed by means of the SV2 adjusting cam screw (see picture) when the cam has reached the high flame position. - once the oil rate is adjusted at the maximum output (the air rate was adjusted in the gas regulation), go on with the point to point adjustment on the **SV2** (light oil side) adjusting cam as to reach the minimum output point, as described on the next steps. - 9 as for the point-to-point regulation, move the gas low flame microswitch (cam III) a little lower than the maximum position (90°); - 10 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position (as far as fully-modulating burners, see the related paragraph); - 11 move the low flame cam to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V2** to increase the rate, unscrew to decrease. - 12 The low flame position must never match the ignition position that is why the cam must be set 20°- 30° more than the ignition position. Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. As far as fully-modulating burners see paragraph on page 22. # Light oil circuit The fuel is pushed into the pump 1 to the nozzle 3 at the delivery pressure set by the pressure governor. The solenoid valve 2 set the fuel immission into the combustion chamber. The part of fuel that is not burnt goes back to the tank through the return circuit. The fuel amount to be burnt is adjusted by means of the burner actuator according to the adjustments set (see prevoius paragraph). Fig. 20 - Stand-by Fig. 21 - Prepurge Fig. 22 - Low flame Fig. 23 - High flame # Key - 1 Light oil pump - 2 Light oil solenoid valve - 3 Nozzle - 4 Actuator - 5 Adjusting cam - 6 pressure gauge - 7 Pressure regulator - 8 One-way valve #### **PART II: OPERATION** #### LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE. OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON. IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. #### **OPERATION** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". - Choose the typer of fuel by turning the A switch, on the burner control panel. CAUTION: if the fuel chosen is light oil, be sure the cutoff valves on the feed and return pipes are open. - Check the control box is not locked (signalling light O, on); if so, reset it by means of the pushbutton C. - Check the series of thermostats and pressure switches turn the burner to on. ### Gas operation Check the gas feeding pressure is sufficient (signalling lamp G on). **Burners provided with gas proving system:** the gas proving system test begins; when the test is performed the proving system LED turns on. At the end of the test, the burner staring cycle begins: in case of leakage in a valve, the gas proving system stops the burner and the lamp **E** turns on. Reset it, by means of the reset pushbutton on the device, in burners with VPS504 (pushbutton **LB** in picture), or by the **D** pushbutton on the burner panel if this one is fitted with LDU11 proving system. **NOTE:** if the burner is fitted with Dungs VPS504, the pre-purgue phase starts once the gas proving system is successfully performed. Since the pre-purgue phase must be carried out with the maximum air rate, the control box drives the actuator opening and when the maximum opening position is achieved, the pre-purge time counting starts. At the end of the pre-purge time, the actuator drives the complete closing (ignition with gas position) and, as this is achieved the ignition transformer is energised (LED L is on). Few seconds after the gas valves opening, the transformer is de-energised and lamp L turns off. • The burner is now operating, meanwhile the actuator goes to the high flame position and, after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by lamp N on the frontal panel. # Light oil operation - The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator is in the light oil ignition position: the ignition transformer is energised (lamp L on). Few seconds after the light oil valves opening, the transformer is de-energised and lamp L turns off. - The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by LED N on the burner control panel. **Modulating burners:** they are provided with the Siemens RWF40 modulator (**P**-see next picture). As for the modulator operation see the related manual. Fig. 24 - Burner control panel 0 Р Modulator Α High flame mode indicating light В Low flame mode indicating light Ignition transformer operation C CM Main switch/operation mode Gas / Oil D Fan motor therma cutout intervention Ε Burner lockout indicating light F Stand-by mode indicating light Gas valve EV1 operation G Gas valve EV2 operation Η Gas pressure switch enabling signal L Oil solenoid valve operation Gas proving system intervention M Ν Control box reset pushbutton Gas proving system reset pushbutton #### **PART III: MAINTENANCE** At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL. #### **ROUTINE MAINTENANCE** - Check and clean the gas filter cartridge, if necessary replace it (see next paragraghs); - Check and clean the fuel filter cartdrige, replace if necessary. - Check and clean the filter inside the light oil pump: filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit. - Check the fuel hoses for possible leaks. - Remove, check and clean the combustion head (see page 30); - Check ignition electrodes, clean, adjust and, if necessary, replace them (see page 31); - Check and carefully clean the UV detector, replace it if necessary; if in doubt, check the detection current, once the burner starts up (see on page 31). - Remove and clean the fuel nozzle (Important: cleaning must be performed using solvent, not metal tools!). At the end of maintenance operations after the burner reassembly, light the flame and
check its shape, replacing the nozzle whenever a questionable flame shape appears. Whenever the burner is used intensely, we recommend preventively replacing the nozzle at the start of each heating season. - Clean and grease sliding and rotating parts. **ATTENTION:** when servicing, if it was necessary to disassemble the gas train parts, remember to execute the gas proving test, once the gas train is reassembled, according to the procedure imposed by the law in force. #### Light oil filter maintenance For correct and proper servicing, proceed as follows: - 1 cutoff the required pipe section; - 2 unscrew the filter cup; - 3 remove the filtering cartridge, wash it with gasoline; if necessary, replace it; check the tightening O-rings and replace them if necessary; - 4 replace the cup and restore the pipe line. # Removing the filter in the MULTIBLOC DUNGS MB-DLE 405..412 - Check the filter at least once a year! - Change the filter if the pressure difference between pressure connection 1 and 3 (Fig. 24-Fig. 25)is ∆p > 10 mbar. - Change the filter if the pressure difference between pressure connection 1 and 3 (Fig. 24-Fig. 25) is twice as high compared to the last check. You can change the filter without removing the fitting. - 1 Interrupt the gas supply closing the on-off valve. - 2 Remove screws 1 ÷ 4 using the Allen key n. 3 and remove filter cover 5 in Fig. 26. - 3 Remove the filter 6 and replace with a new one. - 4 Replace filter cover 5 and tighten screws 1 ÷ 4 without using any force and fasten. - 5 Perform leakage and functional test, p_{max} = 360 mbar. - 6 Pay attention that dirt does not fall inside the valve. # Removing the combustion head - 1 Remove the top **H**. - 2 Disconnect the electrode cables CE. - 3 Remove the **UV** detector out of its housing: disconnect electrode cables and the light oil flexible hoses. - 4 Loosen the screws **V** holding the gas manifold **G**, loosen the two connectors **E** and remove the assembly as shown. Note: to replace the combustion head, reverse the operations described above. 5 Clean the combustion head by means of a vacuum cleaner; scrape off the scale by means of a metallic brush. # Adjusting the electrodes position HP20 # Adjusting the electrodes position HP30 Adjust the electrodes position, according to the measures (in mm) shown on the next picture. # Cleaning/replacing the electrodes **ATTENTION:** avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To clean/replace the electrodes, proceed as follows: - 1 remove the combustion head as described in the previous paragraph; - 2 remove the electrodes ass.y and clean them; - 3 in order to replace the electrodes, unscrew the VE fixing screws and remove them: place the new electrodes being careful to observe the measures in the previous paragraph; reassemble the electrodes and the combustion head following the reversed procedure. # Cleaning and replacing the detection photocell The photocell working life is about 10000 working hours (about 1 year), at max 50°C after which it must be replaced. To clean/replace the detection photocell, proceed as follows: - 1 Disconnect the system from the electrical power supply. - 2 Shut off the fuel supply - 3 remove the photocell from its slot (see next figure); - 4 clean the bulbe if dirty, taking care not to touch it with bare hands; - 5 if necessary, replace the bulb; - 6 replace the photocell into its slot. # Checking the detection current To check the detection current follow the diagram on pictures below. If the signal is less than the value indicated, check the position of the detector, the electrical contacts and, if necessary, replace the detector. | Control box | Minimum detection signal | |-----------------|---------------------------| | Siemens LGB/LME | 200µA (with UV detector) | Keys C Electrolytic capacitor 100...470 μF; DC 10...25 V M Microammeter Ri max. 5000 ohm QRA. UV detector rt Red sw Black br Brown gr Grey bl Blue # Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner's main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel valve in the supply line. # Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". | CAUSE / FAULT | BURNER DOESN'T START | CONTINUE PRE-PURGUE | BURNER DOESN'T START
AND LOCKS | BURNER DOESN'T START
AND REPEATS THE
CYCLE | BURNER STARTS AND
REPEATS THE CYCLE | BURNER DOESN'T
SWITCH TO HIGH FLAME | BURNER'S LOCKOUT
DURING OPERATION | BURNER STOPS AND
REPEATS CYCLE DURING
OPERATION | BURNER'S LOCKOUT
AFTER START | THE FLAME CONTROL
DEV. REPEATS THE
CYCLE WITHOUT GIVE
CONSENT | |---|----------------------|---------------------|-----------------------------------|--|--|--|--------------------------------------|---|---------------------------------|--| | MAIN SWITCH OPEN | • | | | | | | | | | | | ABSENCE OF GAS | • | | | | | | | | | | | MINIMUM GAS PRESSURE SWITCH FAULT OR BAD SETTING | • | | | • | • | | | • | | | | BOILER THERMOSTATS OPEN | • | | | | | | | | | | | OVERLOAD TRIPPED INTERVENTION | • | | | | | | | | | | | FUSES INTERVENTION | • | | | | | | | | | | | AIR PRESSURE SWITCH FAULT OR BAD
SETTING | • | | • | | | | • | | | • | | DEFECTIVE CONTROL BOX | • | • | • | | | | • | | | | | DEFECTIVE AIR DAMPER ACTUATOR | | • | | | | | | | | | | DEFECTIVE IGNITION TRANSFORMER | | | • | | | | | | | | | IGNITION ELECTRODE WRONG POSITION | | | • | | | | | | | | | THROTTLE VALVE BAD SETTING | | | • | | | | | | | | | DEFECTIVE GAS GOVERNOR | | | | • | • | | | • | | | | DEFECTIVE HI-LO FLAME THERMOSTAT | | | | | | • | | | | | | ACTUATOR CAM BAD SETTING | | | | | | • | | | | | | DETECTION PROBE BAD POSITION OR DEFECTIVE DETECTION CIRCUIT | | | | | | | • | | • | | | REVERSED PHASE AND NEUTRAL CONNECTION | | | | | | | | | • | | # BURNER EXPLODED VIEW | ITEM | DESCRIPTION | |---------|---| | 1 | FRONT CONTROL PANEL | | 2 | LIGHT | | 3 | LIGHT | | 4 | LOCK-OUT RESET BUTTON | | 5 | PROTECTION | | 6 | SWITCH | | 7 | BOARD | | 8 | COVER | | 9 | IGNITION ELECTRODE | | 10 | NOZZLE | | 11 | IGNITION CABLE | | 12 | NOZZLE HOLDER | | 13 | GAS MANIFOLD | | 14 | STANDARD COMBUSTION HEAD | | 15 | RING NUT | | 16 | NET | | 17 | MOTOR | | 18 | PLATE | | 19 | COUPLING | | 20 | PUMP | | 21 | BRACKET | | 22 | FAN WHEEL | | 23 | MOTOR | | 24 | PRESSURE GAUGE | | 25 | PRESSURE GOVERNOR | | 26 | BRACKET | | 27 | GAS VALVES GROUP WITH GOVERNOR | | 28 | THREADED GAS PIPE | | 29 | ELBOW | | 30 | FLANGE | | 31 | GAS PROVING SYSTEM | | 32 | AIR INLET CONE | | 33 | BURNER HOUSING | | 34 | COVER | | 35 | COVER EXTENSION | | 36 | GENERATOR GASKET | | 37 | O RING | | 38 | INSPECTION GLASS | | Conorio | drawing: some parts could differ from the ones provided | | <u>Camaria d</u> | | امانيمم مسمم مصياما | differ from t | اممان بمسمم مصمد | |------------------|------------|---------------------|---------------|--------------------| | Generic a | rawing: so | ome parts could | ainer from t | the ones provided. | | ITEM | DESCRIPTION | |------|---------------------| | 39 | PRESSURE PLUG | | 40 | ELBOW | | 41 | THROTTLE SHAFT | | 42 | BUTTERFLY GAS VALVE | | 43 | PHOTOCELL | | 44 | STANDARD BLAST TUBE | | 45 | AIR PRESSURE SWITCH | | 46 | SCREW | | 47 | CAM | | 48 | LEVERAGE | | 49 | ROD | | 50 | JOINT | | 51 | JOINT | | 52 | BUSH | | 53 | LEVERAGE | | 54 | ADJUSTING CAM | | 55 | ACTUATOR | | 56 | ACTUATOR SHAFT | | 57 | BRACKET | | 58 | AIR INTAKE DAMPER | | 59 | AIR INTAKE DAMPER | | 60 | AIR INTAKE | | 61 | LOUVER SHAFT | | 62 | LOUVER SHAFT | | 63 | THROTTLE SHAFT | | 64 | ADJUSTING CAM SHAFT | | 65 | ADJUSTING CAM | | 66 | LEVERAGE | | 67 | ROD | | 68 | ROD | | 69 | JOINT | | 70 | JOINT | | 71 | OIL SOLENOID VALVE | | 72 | ONE-WAY VALVE | | 73 | OIL MANIFOLD | | 74 | CONNECTOR | | 75 | CONNECTOR | | 76 | CONNECTOR | C.I.B. UNIGAS - M039203CC # **WIRING DIAGRAMS** Refer to the attached wiring diagrams. # WARNING - 1 Electrical supply 230 V 50Hz 1N a.c. - 2 Do not reverse phase with neutral 3 Ensure burner is properly earthed CAMME SERVOCOMANDO ACTUATOR CAMS STA12B3.41/63N32L \$T2 ALTA FIAMMA HIGH FLAME \$T0 \$OSTA \$TAND-BY \$T1 BASSA FIAMMA LOW FLAME CAMME SERVOCOMANDO ACTUATOR CAMS SQN30.251A ALTA FIAMMA HIGH FLAME SOSTA STAND-BY BASSA FIAMMA LOW FLAME CAMME SERVOCOMANDO ACTUATOR CAMS SQN72.4A4A20 | Data | 30/07/2014 | PREC. | FOGLIO | |-----------|------------|-------|--------| | Revisione | 01 | / | 1 | | | | SEGUE | TOTALE | | Dis. N. | 8 – 0272 | 2 | 4 | | Sigla/Item | Funzione | Function | |--------------------------|---|--| | 600V RRR0-1-T73 | REGOLATORE MODULANTE (ALTERNATIVO) | BURNER MODULATOR (ALTERNATIVE) | | BERGER STA12B3.41/63N32L | SERVOCOMANDO SERRANDA ARIA | AIR DAMPER ACTUATOR | | CM | SELETTORE MANUALE COMBUSTIBILE 1) GAS 0) OFF 2) GASOLIO | COMBUSTIBLE SELECTOR 1)GAS 0)OFF 2)LIGHT OIL | | EV1,2 | ELETTROVALVOLE GAS (O GRUPPO VALVOLE) | GAS ELECTRO-VALVES (OR VALVES GROUP) | | EVG | ELETTROVALVOLA GASOLIO | LIGHT OIL SOLENOID VALVE | | F3 | FUSIBILE DI LINEA | LINE FUSE | | FC | SONDA UV RILEVAZIONE FIAMMA | UV FLAME DETECTOR | | FU1 | FUSIBILE DI LINEA | LINE FUSE | | FU2 | FUSIBILE AUSILIARIO | AUXILIARY FUSE | | IG | INTERRUTTORE GENERALE | MAINS SWITCH | | KA1 | RELE" AUSILIARIO | AUXILIARY RELAY | | KA2 | RELE" AUSILIARIO | AUXILIARY RELAY | | KM3
HCRMMD | REGOLATORE MODULANTE (ALTERNATIVO) | BURNER MODULATOR (ALTERNATIVE) | | LAF | LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE | BURNER IN HIGH FLAME INDICATOR LIGHT | | LB | LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE | INDICATOR LIGHT FOR BURNER LOCK-OUT | | LB1 | LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE | INDICATOR LIGHT FOR BURNER LOCK-OUT | | LBF | LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE | BURNER IN LOW FLAME INDICATOR LIGHT | | LEV1 | LAMPADA SEGNALAZIONE APERTURA [EV1] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1] | | LEV2 | LAMPADA SEGNALAZIONE APERTURA [EV2] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2] | | LEVG | LAMPADA SEGNALAZIONE APERTURA [EVG] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG] | | LFG | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE A GAS | BURNER GAS OPERATION INDICATOR LIGHT | | LF0 | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE A GASOLIO | BURNER LIGHT OIL OPERATION INDICATOR LIGHT | | LPGMIN | LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE | INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK | | LSPG | LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE | INDICATOR LIGHT FOR LEAKAGE OF VALVES | | LSPG1 | LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE | INDICATOR LIGHT FOR LEAKAGE OF VALVES | | LTA | LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER INDICATOR LIGHT | | MP | MOTORE POMPA GASOLIO | LIGHT OIL PUMP MOTOR | | MV | MOTORE VENTILATORE | FAN MOTOR | | PA | PRESSOSTATO ARIA | AIR PRESSURE SWITCH | | PGMAX | PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL) | MAXIMUM PRESSURE GAS SWITCH (OPTIONAL) | | PGMIN | PRESSOSTATO GAS DI MINIMA PRESSIONE | MINIMUM GAS PRESSURE SWITCH | | POMAX | PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL) | MAXIMUM OIL PRESSURE SWITCH (OTIONAL) | | PS | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | PS1 | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | PS1 | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | PT100 | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | RL1 | RELE" AUSILIARIO | AUXILIARY RELAY | | SD-PRESS | SONDA DI PRESSIONE | PRESSURE PROBE | | SD-TEMP. | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | SD - 0÷10V | TRASDUTTORE USCITA IN TENSIONE | TRANSDUCER VOLTAGE OUTPUT | | SD - 4÷20mA | TRASDUTTORE USCITA IN CORRENTE | TRANSDUCER CURRENT OUTPUT | | SIEMENS AGQ3.1 | ADATTATORE PER SONDA UV RILEVAZIONE FIAMMA | ADAPTER FOR UV FLAME DETECTOR | | SIEMENS LME22.331 | APPARECCHIATURA CONTROLLO FIAMMA | CONTROL BOX | | SIEMENS RWF50.2x | REGOLATORE MODULANTE | BURNER MODULATOR | | SIEMENS RWF55.5x | REGOLATORE MODULANTE | BURNER MODULATOR | | SIEMENS SQN30.251 | SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO) | AIR DAMPER ACTUATOR (ALTERNATIVE) | | SIEMENS SQN72.4A4A20 | SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO) | AIR DAMPER ACTUATOR (ALTERNATIVE) | | SMA | SELETTORE MANUALE/AUTOMATICO | MANUAL/AUTOMATIC SWITCH | | SMF | SELETTORE MANUALE FUNZIONAMENTO MIN-0-MAX | MIN-0-MAX MANUAL OPERATION SWITCH | | ST | SERIE TERMOSTATI/PRESSOSTATI | SERIES OF THERMOSTATS OR PRESSURE SWITCHES | | TA | TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER | | TAB | TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA | HIGH-LOW THERMOSTAT/PRESSURE SWITCHES | | TC | TERMOCOPPIA | THERMOCOUPLE | | VPS504 | CONTROLLO DI TENUTA VALVOLE GAS (OPTIONAL) | GAS PROVING SYSTEM (OPTIONAL) | | Data | 30/07/2014 | PREC. | FOGLIO | |-----------|------------|-------|--------| | Revisione | 01 | 3 | 4 | | | | SEGUE | TOTALE | | Dis. N. 1 | 8 – 0272 | 1 | 4 | ### **APPENDIX** #### SIEMENS LME11/21/22 CONTROL BOX The series of equipment LME.. is used for the starup and supervisione of 1- or 2- stage gas burners. The series LME.. is interchangeable with the series LGB.. and LMG.., all diagrams and accessories are interchangeable. #### Comparative table | LGB Series | LMG Series | LME Series | |------------|------------|------------| | | LMG 25.33 | LME 11.33 | | LGB 21.33 | LMG 21.33 | LME 21.33 | | LGB 22.33 | LMG 22.33 | LME 22.33 | # Preconditions for burner startup - Burner control must be reset - All contacts in the line are closed, request for heat - No undervoltage - Air pressure switch LP must be in its "no-load" position - Fan motor or AGK25 is closed - Flame detector is darkened and there is no extraneous light #### Undervoltage Safety shutdown from the operating position takes place should mains voltage drop below about AC 175 V (at UN = AC 230 V) Restart is initiated when mains voltage exceeds about AC 185 V (at UN = AC 230 V). #### Controlled intermittent operation After no more than 24 hours of continuous operation, the burner control will initiate automatic controlled shutdown followed by a restart. #### Reversed polarity protection with ionization If the connections of live conductor (terminal 12) and neutral conductor (terminal 2) aremixed up, the burner control will initiate lockout at the end of the safety time "TSA". #### Control sequence in the event of fault If lockout occurs, the outputs for the fuel valves, the burner motor and the ignition equipment will immediately be deactivated (< 1 second). #### Operational status indication In normal operation, the different operating states are showed by means of the multicolor LED, inside the lockout reset button: | | red LED | | Steady on | |-----|------------|---|-----------| | | yellow LED | | | | | green LED | O | Off | | LED | | | | During startup, status indication takes place according to the table: | Status | Color code | Color | |---|-------------------------|-----------------| | Waiting time tw, other waiting states | O | Off | | Ignition phase, ignition controlled | • • • • • • • • • • • • | Flashing yellow | | Operation, flame ok | <u> </u> | Green | | Operation, flame not ok | 000000000 | Flashing green | | Extraneous light on burner startup | | Green - red | | Undervoltage | • 4 • 4 • 4 • 4 | Yellow - red | | Fault, alarm | A | Red | | Error code output
(refer to "Error code
table") | AO AO AO | Flashing red | #### START-UP PROGRAM As far as the startup program, see its time diagram: #### A Start command (switching on) This command is triggered by control thermostat / pressure controller «R». Terminal 12 receives voltage and the programming mechanism starts running. On completion of waiting time «tw» with the LME21..., or after air damper «SA» has reached the nominal load position (on completion of «t11») with the LME22..., fan motor «M» will be started. #### tw Waiting time During the waiting time, air pressure monitor «LP» and flame relay «FR» are tested for correct contact positions. ## t11 Programmed opening time for actuator «SA» (Only with LME22...) The air damper opens until the nominal load position is reached. Only then will fan motor ${\rm `M}$ " be switched on. #### t10 Specified time for air pressure signal On completion of this period of time, the set air pressure must have built up, or else lockout will occur. #### t1 Prepurge time Purging the combustion chamber and the secondary heating surfaces: required with low-fire air volumes when using the LME21... and with nominal load air volumes when using the LME22.... The diagrams show the so-called prepurge time «t1» during which air pressure monitor «LP» must indicate that the required air pressure is available. The effective prepurge time «t1» comprises interval end «tw» through «t3». #### t12 Programmed closing time for actuator «SA» (Only with LME22...)During «t12», the air damper travels to the low-fire position. ## t3 Preignition time During «t3» and up to the end of «TSA», flame relay «FR» is forced to close. On completion of «t3», the release of fuel is triggered at terminal 4. #### TSA Ignition safety time On completion of «TSA», a flame signal must be present at terminal 1. That flame signal must be continuously available until shutdown occurs, or else flame relay «FR» will be deenergized, resulting in lockout. #### t4 Interval BV1 and BV2-LR Time between the end of TSA and the signal to the second fuel valve BV2 or to the load controller LR - B B' Interval for flame establishment - C Burner operation position - C D Burner operation (heat production) - **D** Controlled by "R" shutdown The burner stops and the control device is ready for a new startup. # LME21 control sequence # LME22 control sequence # Control sequence tw Waiting time t1 Purge time TSA Ignition safety time t3 Preignition time t3n Postignition time t4 Interval between BV1 and BV2/LR t10 Specified time for air pressure signal t11 Programmed opening time for actuator SA t12 Programmed closing time for actuator SA # LME11 connection diagram # Connection diagram AL Error message (alarm) BV Fuel valve EK2 Remote lockout reset button FS Flame signal GP Gas pressure switch LP Air pressure switch LR Load controller M Fan motor R Control thermostat/pressurestat SB Safety limit thermostat W Limit thermostat /pressure switch Z Ignition transformer ## LME21 connection diagram # LME22 connection diagram #### **CONTROL PROGRAM IN THE EVENT OF FAULT** - If a fault occurs, all outputs will immediately be deactivated (in less than 1s) - After an interruption of power, a restart will be made with the full program sequence. - If the operating voltage drops below the undervoltage thresold, a safety shutdown is performed. - If the operating voltage exceeds the undervoltage thresold, a restart will be performed. - In case of extraneous light during "t1", a lockout occurs. - In case of extraneous light during "tw", there is a prevention of startup and a lockout after 30 seconds. - In case of no flame at the end of TSA, there will be max. 3 repetitions of the startup cycle, followed by a lockout at the end of TSA, for mod. LME11..; directly a lockout at the end of TSA for LME21-22 models. - For LME11 model: if a loss of flame occurs during operation, in case of an establishment of flame at the end of TSA, there will be max. 3 repetitions, otherwise a lockout will occur. - For LME21-22
models: if a loss of flame occurs during operation, there will be a lockout. - If the contact of air pressure monitor LP is in working position, a prevention of startup and lockout after 65 seconds will occur. - Iff the contact of air pressure monitor LP is in normal position, a lockout occurs at the end of t10. - If no air pressure signal is present after completion of t1, a lockout will occur. #### **CONTROL BOX LOCKED** In the event of lockout, the LME.. remains locked and the red signal lamp (LED) will light up. The burner control can immediately be reset. This state is also mantained in the case fo mains failure. #### DIAGNOSITICS OF THE CASUE OF FAULT - Press the lockout reset button for more than 3 seconds to activate the visual diagnostics. - Count the number of blinks of the red signsl lamp and check the fault condition on the "Error code table" (the device repeats the blinks for regular intervals). During diagnostics, the control outputs are deactivated: - the burner remains shut down; - external fault indication is deactivated: - fault status is showed by the red LED, inside the LME's lockout reset buttonaccording to the "Error code table": | | ERROR CODE TABLE | | |--|--|--| | 2 blinks ** | No establishment of flame at the end of TSA | | | | - Faulty or soiled fuel valves | | | | - Faulty or soiled flame detector | | | | - Inadequate adjustement of burner, no fuel | | | | - Faulty ignition equipment | | | | The air pressure switch does not switch or remains in idle position: | | | 3 blinks *** | - LP is faulty | | | o billing | - Loss of air pressure signal after t10 | | | | - LPis welded in normal position. | | | 4 blinks **** | - Extraneous light when burner starts up. | | | 5 blinks ***** | - LP is working position. | | | 6 blinks ***** | Free. | | | 7 blinks ****** | Loss of flame during operation | | | | - Faulty or soiled fuel valves | | | | - Faulty or soiled flame detector | | | | - Inadequate adjustement of burner | | | 8 ÷ 9 blinks | Free | | | 10 blinks ******** | Faulty output contacts | | | | Attention: "lockout" remote signal (terminal no. 10) not enabled | | | | - Wiring error | | | | - Anomalous voltage on ouput terminals | | | | - Other faults | | | 14 blinks ********************* (only for LME4x) | - CPI contact (gas valve microswitch) not closed. | | ### RESETTING THE BURNER CONTROL When lockout occurs, the burner control can immediately be reset, by pressing the lockout reset button for about 1..3 seconds. The LME.. can only be reset when all contacts in the line are closed and when there is no undervoltage. # LIMITATION OF REPETITIONS (only for LME11.. model) If no flame is established at the end of TSA, or if the flame is lost during operation, a maximum of 3 repetitions per controller startup can be performed via "R", otherwise lockout will be initiated. Counting of repetitions is restarted each time a controlled startup via "R" takes place. Condensation, formation of ice and ingress of water are not permitted! #### **TECHNICAL CHARACTERISTICS** Mains voltage 120V AC +10% / -15% 230V AC +10% / -15% Frequency 50 ... 60 Hz +/- 6% Power consumption 12VA External primary fuse input current at terminal 12 max. 5 A Detection cable length max. 3m (for electrode) Detection cable length max. 20 m (laid separately, for QRA probe) Reset cable length max. 20 m (posato separatamente) Term. 8 & 10 cable length max. 20 m Thermostat cable length max. 3 m and other terminals Safety class I Index of protection IP40 (to be ensured during mounting) $\begin{array}{lll} \text{Operating conditions} & -20... +60 \, ^{\circ}\text{C}, < 95\% \,\, \text{UR} \\ \text{Storage conditions} & -20... +60 \, ^{\circ}\text{C}, < 95\% \,\, \text{UR} \\ \text{Weight} & \text{approx. 160 g} \\ \end{array}$ SIEMENS LGB 21/22.. CONTROL BOX **Function** The programme run is shown in the diagrams. The required and permissible input signals for the control part and flame supervision part are pictured as a hatching correspondingly in the function diagrams. If these input signals are missing, the controller interrupts the start-up programme and initiates a lock-out at the place where the safety regulations demand it. The LGB types are fitted with under voltage protection, i.e. the load relay AR is de-energized when the supply voltage falls below 160 V. The burner control automatically attempts a new start-up when the supply voltage again exceeds 160 V A Start-up command from the temperature or pressure controller "R" A-C Start-up programme C-D Burner operation (heat production corresponding to the control commands) D Controlled shut-down by "R" #### LGB21 #### LGB22 # Key for operation diagram A - C Startup sequence tw Waiting time, 8s for LGB21, 9s for LGB22 t1 Prepurge time 30s TSA Ignition safety time 3s t3 Preignition time, 2s for LGB21, 3s for LGB22 t4 Interval «BV1-BV2» or «BV1-LR», 8s t10 Specified time for air pressure signal, 5s for LGB21, 3s for LGB22 t11 Programmed opening time for actuator «SA», max. 12s t12 Programmed closing time for actuator «SA», max. 11s BV Fuel valves FS Flame presence signal GP Gas pressure switch LP Air pressure switch LR Load controller M Fan motor R Temperature or pressure controller W Safety thermostat or pressure switch Z Ignition transformer 1...12 Terminals of the burner flame controls on AGK11's socket Command signal from flame control Imput signals # Conditions for starting up the burner: The burner control must not be locked out. The contacts of the gas pressure switch "GP", the temperature or pressure switch "W" and the controller "R", must be closed. #### Start-up programme #### A Start command (switching on) This command is triggered by control thermostat / pressure controller «R». Terminal 12 receives voltage and the programming mechanism starts running. On completion of waiting time «tw» with the LGB21..., or after air damper «SA» has reached the nominal load position (on completion of «t11») with the LGB22..., fan motor «M» will be started. #### tw Waiting time During the waiting time, air pressure monitor «LP» and flame relay «FR» are tested for correct contact positions. #### t11 Programmed opening time for actuator «SA» (Only with LGB22...) The air damper opens until the nominal load position is reached. Only then will fan motor «M» be switched on. #### t10 Specified time for air pressure signal On completion of this period of time, the set air pressure must have built up, or else lockout will occur. #### t1 Prepurge time Purging the combustion chamber and the secondary heating surfaces: required with low-fire air volumes when using the LGB21... and with nominal load air volumes when using the LGB22.... The diagrams show the so-called prepurge time «t1» during which air pressure monitor «LP» must indicate that the required air pressure is available. The effective prepurge time «t1» comprises interval end «tw» through «t3». # t12 Programmed closing time for actuator «SA» (Only with LGB22...)During «t12», the air damper travels to the low-fire position. ## t3 Preignition time During «t3» and up to the end of «TSA», flame relay «FR» is forced to close. On completion of «t3», the release of fuel is triggered at terminal 4. #### TSA Ignition safety time On completion of «TSA», a flame signal must be present at terminal 1. That flame signal must be continuously available until shutdown occurs, or else flame relay «FR» will be deenergized, resulting in lockout. #### t4 Interval LGB21...: time to the release of the second fuel valve «BV2» LGB22...: on completion of «t4», the heat source is controlled depending on the load (release of load controller «LR») **B** - **B'** Interval for flame establishment **C** Burner operation position **C - D** Burner operation (heat production) Operation of the burner at the maximum strength or, with a flame controller for the load **D** Controlled by "R" shutdown The burner stops, waiting for the next ignition. #### Command program in the event of a defect In the event of a defect the inflow of fuel is interrupted. When the block occurs in the preventilation time (not indicated by the symbol) the causes may be the air pressostat LP or a premature signal of flame presence. - With voltage failure: repetition of the start-up with complete programme - Premature presence of flame at the start of preventilation time: safety stop (block) - Contact of air pressostat LP stuck during time tw: start-up cannot take place. - Air pressure failure after t10: safety stop after safety time TSA - Absence of confirmation of air pressure: safety stop(block) after t10 - Failure to start up the burner: safety stop after safety time TSA - Absence of flame during functioning: immediate safety stop. - Checking the ignition spark with QRE: with absence of spark there is no consent to the fuel, safety stop (block) after time t2. #### Unblocking the appliance Unblocking of the appliance can be effected immediately after the safety stop without causing modification of the programme. #### Indicator of the command programme of the defective item On the front part of the safety appliance is located a plexiglass lunette under which there is the indicator disc of programme's progress. In the event of safety stop, the programmer stops. The disc shows, as follows, the position of the programme at which the interruption occurred: no start-up, the command ring is open interval tw or t10 on LGB21; tw or t11 on LGB22 ▲ air damper open (LGB22) safety stop (block) through absence of the air pressure signal (LGB21) or because (LGB22) the air damper is not open → interval t1, t3 (t12) ▼ fuel consent (LGB22) 1 safety stop (block) through absence of the flame signal at the end of the 1st safety time 2 consent of the 2nd fuel valve (LGB 21) or consent at the power regulator (LGB22) functioning of the burner at partial or maximum power (or return to the service position)
Specifications Supply voltage 220 V AC -15%...240 VAC +10% Frequency 50 Hz -6%...60 Hz +6% Consumption 3 VA Flow rate of the contacts at terminals - terminal 3 max. 3 A (15 A max. for 0.5s) - terminals 4, 5, 7 max. 2 A - terminal 10 max. 1 A - terminal 12 (for Umax 264 V) max. 5 A* Fuse max. 10 A, with slow blow-out Radio disturbance N - VDE0875 Protection IP40 Permissible ambient temperature - operating -20....+ 60°C - transport and storage -40....+ 70°C Mounting pos. permitted any Mass (weight) without/with basec. 230/310 g Mass (weight) AGK66 c. 12 kg *) At permissible voltage and that is 187...264 V # Key - internal diagram Block signal ΑL Main relay with "ar" contacts AR Block relay with "br" contacts BR BV Fuel valve Dbr1 U bolt ΕK Unblocking button FΕ Detection electrode FR Flame relay with "fr" contacts GΡ Gas pressostat HS Main selector Phase conductor L1 Block light (blinking) LP Air pressostat Fan motor M Synchronous motor MS Neutral conductor Ν R Thermostat or pressostat W Safety thermostat or pressostat Ζ Ignition transformer # Key - programmer's diagram start-up (command from regulator "R") В burner operation С program start position (start up) tw waiting time t1 preventilation time TSA safety time pre-ignition time t3 interval of time BV1-BV2 or BV1-LR t4 t10 waiting time for confirmation of air pressure t11 air damper movement time to open position t12 air damper movement time to close position t20 travel time for auto-return of the programmer Т programmer's total time I.IX contacts of programmer's cams # LGB21 ## LGB22 C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions exceptd. | Sigla/Item | Funzione | Function | |--------------------------|---|--| | 600V RRR0-1-T73 | REGOLATORE MODULANTE (ALTERNATIVO) | BURNER MODULATOR (ALTERNATIVE) | | BERGER STA12B3.41/63N32L | SERVOCOMANDO SERRANDA ARIA | AIR DAMPER ACTUATOR | | M | SELETTORE MANUALE COMBUSTIBILE 1) GAS 0) OFF 2) GASOLIO | COMBUSTIBLE SELECTOR 1)GAS 0)OFF 2)LIGHT OIL | | V1,2 | ELETTROVALVOLE GAS (O GRUPPO VALVOLE) | GAS ELECTRO-VALVES (OR VALVES GROUP) | | VG | ELETTROVALVOLA GASOLIO | LIGHT OIL SOLENOID VALVE | | :3 | FUSIBILE DI LINEA | LINE FUSE | | :C | SONDA UV RILEVAZIONE FIAMMA | UV FLAME DETECTOR | | ·U1 | FUSIBILE DI LINEA | LINE FUSE | | U2 | FUSIBILE AUSILIARIO | AUXILIARY FUSE | | 5 | INTERRUTTORE GENERALE | MAINS SWITCH | | (A1 | RELE" AUSILIARIO | AUXILIARY RELAY | | A2 | RELE" AUSILIARIO | AUXILIARY RELAY | | (M3 HCRMMD | REGOLATORE MODULANTE (ALTERNATIVO) | BURNER MODULATOR (ALTERNATIVE) | | AF | LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE | BURNER IN HIGH FLAME INDICATOR LIGHT | | В | LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE | INDICATOR LIGHT FOR BURNER LOCK-OUT | | B1 | LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE | INDICATOR LIGHT FOR BURNER LOCK-OUT | | BF | LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE | BURNER IN LOW FLAME INDICATOR LIGHT | | .EV1 | LAMPADA SEGNALAZIONE APERTURA [EV1] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1] | | .EV2 | LAMPADA SEGNALAZIONE APERTURA [EV2] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2] | | EVG | LAMPADA SEGNALAZIONE APERTURA [EVG] | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG] | | .FG | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE A GAS | BURNER GAS OPERATION INDICATOR LIGHT | | FO | LAMPADA SEGNALAZIONE FUNZIONAMENTO BRUCIATORE A GASOLIO | BURNER LIGHT OIL OPERATION INDICATOR LIGHT | | PGMIN | LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE | INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK | | SPG | LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE | INDICATOR LIGHT FOR LEAKAGE OF VALVES | | SPG1 | LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE | INDICATOR LIGHT FOR LEAKAGE OF VALVES | | .TA | LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER INDICATOR LIGHT | | 1P | MOTORE POMPA GASOLIO | LIGHT OIL PUMP MOTOR | | 1V | MOTORE VENTILATORE | FAN MOTOR | | PA | PRESSOSTATO ARIA | AIR PRESSURE SWITCH | | PGMAX | PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL) | MAXIMUM PRESSURE GAS SWITCH (OPTIONAL) | | PGMIN | PRESSOSTATO GAS DI MINIMA PRESSIONE | MINIMUM GAS PRESSURE SWITCH | | POMAX | PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL) | MAXIMUM OIL PRESSURE SWITCH (OTIONAL) | | PS . | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | °S1 | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | PS1 | PULSANTE SBLOCCO FIAMMA | FLAME UNLOCK BUTTON | | T100 | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | RL1 | RELE" AUSILIARIO | AUXILIARY RELAY | | D-PRESS | SONDA DI PRESSIONE | PRESSURE PROBE | | D-TEMP. | SONDA DI TEMPERATURA | TEMPERATURE PROBE | | D - 0÷10V | TRASDUTTORE USCITA IN TENSIONE | TRANSDUCER VOLTAGE OUTPUT | | D - 4÷20mA | TRASDUTTORE USCITA IN CORRENTE | TRANSDUCER CURRENT OUTPUT | | IEMENS AGQ3.1 | ADATTATORE PER SONDA UV RILEVAZIONE FIAMMA | ADAPTER FOR UV FLAME DETECTOR | | SIEMENS LME22.331 | APPARECCHIATURA CONTROLLO FIAMMA | CONTROL BOX | | IEMENS RWF50.2x | REGOLATORE MODULANTE | BURNER MODULATOR | | IEMENS RWF55.5x | REGOLATORE MODULANTE | BURNER MODULATOR | | IEMENS SQN30.251 | SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO) | AIR DAMPER ACTUATOR (ALTERNATIVE) | | IEMENS SQN72.4A4A20 | SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO) | AIR DAMPER ACTUATOR (ALTERNATIVE) | | SMA | SELETTORE MANUALE/AUTOMATICO | MANUAL/AUTOMATIC SWITCH | | SMF | SELETTORE MANUALE FUNZIONAMENTO MIN-0-MAX | MIN-0-MAX MANUAL OPERATION SWITCH | | iT | SERIE TERMOSTATI/PRESSOSTATI | SERIES OF THERMOSTATS OR PRESSURE SWITCHES | | Ā | TRASFORMATORE DI ACCENSIONE | IGNITION TRANSFORMER | | AB | TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA | HIGH-LOW THERMOSTAT/PRESSURE SWITCHES | | C | TERMOCOPPIA | THERMOCOUPLE | | /PS504 | CONTROLLO DI TENUTA VALVOLE GAS (OPTIONAL) | GAS PROVING SYSTEM (OPTIONAL) | | Data | 30/07/2014 | PREC. | FOGLIO | |------------------|------------|-------|--------| | Revisione | 01 | 3 | 4 | | 40 0070 | | SEGUE | TOTALE | | Dis. N. 1 | 18 – 0272 | 1 | 4 |