K750A K890A K990A Gas - Light oil burners **MANUAL OF INSTALLATION - USE - MAINTENANCE** BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### DANGERS, WARNINGS AND NOTES OF CAUTION # THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things: - Failure to comply with one of the WARNINGS in this chapter - Incorrect handling, installation, adjustment or maintenance of the burner - Incorrect use of the burner or incorrect use of its parts or optional supply ## 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains. - b Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### Special warnings - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance; - set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. # 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - -do not touch the unit with wet or damp parts of the body and/or with bare feet: - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type: - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. ### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room; - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. ####
DIRECTIVES AND STANDARDS #### Gas burners #### European directives - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Light oil burners #### **European directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267-2011(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); ## Heavy oil burners ### **European Directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Gas - Light oil burners ## **European Directives** - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) ### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); #### Gas - Heavy oil burners #### **European directives:** - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electri- - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); #### Industrial burners ## **European directives** - -Regulation 2016/426/UE (appliances burning gaseous fuels) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 746-2 (Industrial thermoprocessing equipment Part 2: Safety requirements for combustion and fuel handling systems) - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design - Risk assessment and risk reduction); - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements) #### Burner data plate For the following information, please refer to the data plate: - burner type and burner model: must be reported in any communication with the supplier - burner ID (serial number): must be reported in any communication with the supplier - date of production (year and month) - information about fuel type and network pressure | ype | | |-------------|--| | fodel | | | 'ear | | | .Number | | | Output | | | il Flow | | | uel | | | ategory | | | as Pressure | | | iscosity ' | | | I.Supply | | | I.Consump. | | | an Motor | | | rotection | | | rwaing n° | | | l.I.N. | | #### SYMBOLS USED **WARNING!** Failure to observe the warning may result in irreparable damage to the unit or damage to the environment DANGER! Failure to observe the warning may result in serious injuries or death. **WARNING!** Failure to observe the warning may result in electric shock with lethal consequences Figures, illustrations and images used in this manual may differ in appearance from the actual product. #### **BURNER SAFETY** The burners - and the configurations described below - comply with the regulations in force regarding health, safety and the environment. For more in-depth information, refer to the declarations of conformity that are an integral part of this Manual. DANGER! Incorrect motor rotation can seriously damage property and injure people. ## Residual risks deriving from misuse and prohibitions The burner has been built in order to make its operation safe; there are, however, residual risks. Do not touch any mechanical moving parts with your hands or any other part of your body. Injury hazard Do not touch any parts containing fuel (i.e. tank and pipes). Scalding hazard Do not use the burner in situations other than the ones provided for in the data plate. Do not use fuels other than the ones stated. Do not use the burner in potentially explosive environ- Do not remove or by-pass any machine safety devices. Do not remove any protection devices or open the burner or any other component while the burner is running. Do not disconnect any part of the burner or its components while the burner is running. Untrained staff must not modify any linkages. After any maintenance, it is important to restore the protection devices before restarting the machine. All safety devices must be kept in perfect working order. Personnel authorized to maintain the machine must always be provided with suitable protections. ATTENTION: while running, the parts of the burner near the generator (coupling flange) are subject to overheating. Where necessary, avoid any contact risks by wearing suitable PPE. #### **PART I: SPECIFICATIONS** ## **BURNERS FEATURES** Note: the figure is indicative only Keys - 1 Gas filter - 2 Gas valve group - 3 Mimic panel with startup switch - 4 Cove - 5 Flange - 6 Blast tube-Combustion head group - 7 Air intake - 8 Adjusting cams - 9 Air pressure switch - 10 Actuator - 11 Oil pressure governor - 12 Pump - 13 Oil manifold - 14 Head adjusting ring nut **Gas operation:** the gas coming from the supply line, passes through the valves group provided with filter and governor. This one forces the pressure in the utilisation limits. The actuators move proportionally the air damper and the gas butterfly valve, in order to achieve the optimisation of the gas flue values, as to get an efficient combustion. **Light oil operation:** the fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame. In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle. The pump main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure regulators: one for the high and one for low pressure (in double-stage systems with one nozzle). The adjustable combustion head can improve the burner performance. The combustion head determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber). The control panel, placed on the burner front side, shows each operating stage. ## Country and usefulness gas categories | GAS
CATEGORY | | COUNTRY | |
| |----------------------|----|---------| | I _{2H} | AT | ES | GR | SE | FI | ΙE | HU | IS | NO | CZ | DK | GB | IT | PT | CY | EE | LV | SI | MT | SK | BG | LT | RO | TR | CH | | I _{2E} | LU | PL | - | | I _{2E(R)B} | BE | - | | (*) I _{2EK} | NL | - | | I _{2ELL} | DE | - | | l _{2Er} | FR | - | (*) Only for I_{2EK}: the appliance was configured for the appliance category K (I2K) and is suitable for the use of G and G+ distribution gases according to the specifications as included in the NTA 8837:2012 Annex D with a Wobbe index of 43.46 – 45.3 MJ/m3 (dry, 0 °C, upper value) or 41.23 – 42.98 (dry, 15 °C, upper value). This appliance can moreover be converted and/or be calibrated for the appliance category E (I2E). This therefore implies that the appliance "is suitable for G+ gas and H gas or is demonstrably suitable for G+ gas and can demonstrably be made suitable for H gas" within the meaning of the "Dutch Decree of 10 May 2016 regarding amendment of the Dutch Gas Appliances Decree and the Dutch Commodities (Administrative Fines) Act in connection with the changing composition of gas in the Netherlands as well as technical amendment of some other decrees. # Burner model identification Burners are identified by burner type and model. Burner model identification is described as follows. | Type | K750A | Model | MG. | MD. | SR. | *. | A. | 8. | 80. | |------|-------|-------|-----|-----|-----|-----|-----|-----|-----| | | (1) | | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | 1 | BURNER TYPE | K750A- K890A - K990A | | | | | | | |---|--------------------------------|---|--|--|--|--|--|--| | 2 | FUEL | M - Natural gas - G - Light oil | | | | | | | | 3 | OPERATION (Available versions) | MD - Fully modulating - PR - Progressive | | | | | | | | 4 | BLAST TUBE | SR = Standard blast tube + ABS polymer (silenced) air intake | | | | | | | | 5 | DESTINATION COUNTRY | * - see data plate | | | | | | | | 6 | BURNER VERSION | A - Standard, Y - Special | | | | | | | | 7 | EQUIPMENT | 1 = 2 gas valves + gas proving system | | | | | | | | | | 8 = 2 gas valves + gas proving system + maximum gas pressure switch | | | | | | | | 8 | GAS CONNECTION | 65 = DN65 80 = DN80 100 = DN100 125 = DN125 | | | | | | | # **Technical Specifications** | BURNER TYPE | | K750A | K890A | K990A | | | | |--|--------------------------------|-------------|--|-------------|--|--|--| | Output | min max. kW | 880 - 7500 | 1000 - 8900 | 1820 - 9900 | | | | | Fuel | | | Natural gas - Light oil (see next paragraph) | | | | | | Category | | | | | | | | | Gas rate- Natural gas | min max. (Stm ³ /h) | 93 - 794 | 106 - 942 | 193 - 1048 | | | | | Gas pressure | mbar | | (see Note 2) | | | | | | Light oil rate | minmax. kg/h | 74 - 632 | 84 - 750 | 68 - 370 | | | | | Oil viscosity | cSt @ 40°C | | 2 - 7,4 | | | | | | Oil density | kg/m ³ | | 840 | | | | | | Light oil train inlet pressure | bar max | 2 | | | | | | | Power supply | | | 400V 3N ~ 50Hz | | | | | | Total power consumption | kW | 17,7 | 18,5 | 18,5 | | | | | Electric motor | kW | 15,0 | 15,0 | 15,0 | | | | | Pump motor | kW | 2,2 | 3,0 | 3,0 | | | | | Protection | | | IP40 | | | | | | Operation | | | PR - Progressive | | | | | | Gas train 65 / Gas connection | | 65 / | DN65 | - | | | | | Gas train 80 Valves size / Gas connec | ction | | 80 / DN80 | | | | | | Gas train 100 Valves size / Gas connec | ction | | 100 / DN100 | | | | | | Gas train 125 / Gas connection | | 125 / DN125 | | | | | | | Operating temperature | °C | -10 ÷ +50 | | | | | | | Storage Temperature | °C | | -20 ÷ +60 | | | | | | Working service (*) | | Intermitent | | | | | | | Note1: | All gas flow rates are referred to Stm^3/h (1.013 mbar absolute pressure, 15° C temperature) and are valid for G20 gas (net calorific value H_i = 34.02 MJ / Stm^3); | |--------|---| | Note2: | Maximum gas pressure = 500mbar (with Siemens VGD or Dungs MultiBloc MBE) Minimum gas pressure = see gas curves. | | Note3: | Burners are suitable only for indoor operation with a maximum relative humidity of 80 % | ^(*) NOTE ON THE WORKING SERVICE: the control box automatically stops after 24h of continuous working. The control box immediately starts up, automatically. # Overall dimensions (mm) BS = standard blast tube BL = long blast tube DN = gas valves size B*: SPECIAL blast tube lengths must be agreed with Cib Unigas Boiler recommended drilling template Burner flange | TIPO | DN | A (AS) | AA | AB | AC | AD | AE | AN | AP | B (BS) | BB | С | CC | D | Е | F | G | Н | J | K | L | М | N | 0 | Р | Q | R | S | U | V | W | Υ | Z | |------|-----|--------|-----|------|-----|----|-----|-----|-----|--------|-----|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----| | | 50 | 1841 | 366 | 1073 | 670 | 25 | 300 | 595 | 101 | 530 | 626 | 1311 | 524 | 1672 | 946 | 726 | 340 | 380 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 763 | 150 | 614 | 845 | 190 | 960 | 328 | 270 | | ∢ | 65 | 1841 | 366 | 1073 | 670 | 25 | 300 | 611 | 117 | 530 | 626 | 1311 | 524 | 1695 | 969 | 726 | 340 | 380 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 636 | 150 | 487 | 845 | 292 | 960 | 328 | 270 | | 750, | 80 | 1841 | 366 | 1073 | 670 | 25 | 300 | 626 | 132 | 530 | 626 | 1311 | 524 | 1728 | 1002 | 726 | 340 | 380 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 687 | 150 | 538 | 875 | 313 | 960 | 328 | 270 | | ⊻ | 100 | 1841 | 366 | 1073 | 670 | 25 | 300 | 639 | 145 | 530 | 626 | 1311 | 524 | 1808 | 1082 | 726 | 340 | 380 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 791 | 150 | 642 | 942 | 353 | 960 | 328 | 270 | | | 125 | 1841 | 366 | 1073 | 670 | 25 | 300 | 738 | 175 | 530 | 626 | 1311 | 524 | 2073 | 1347 | 726 | 340 | 380 | 562 | 540 | 690 | M16 | 651 | 460 | 460 | 904 | 150 | 754 | 1192 | 479 | 960 | 328 | 270 | | | 50 | 1840 | 366 | Х | Х | 25 | Х | 595 | 101 | 530 | 626 | 1310 | 524 | 1672 | 946 | 726 | 400 | 440 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 763 | 150 | 614 | 845 | 190 | 960 | 328 | 270 | | ∢ | 65 | 1840 | 366 | Х | Х | 25 | Х | 611 | 117 | 530 | 626 | 1310 | 524 | 1695 | 969 | 726 | 400 | 440 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 636 | 150 | 487 | 845 | 292 | 960 | 328 | 270 | | 890 | 80 | 1840 | 366 | Х | Х | 25 | Х | 626 | 132 | 530 | 626 | 1310 | 524 | 1728 | 1002 | 726 | 400 | 440 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 687 | 150 | 538 | 875 | 313 | 960 | 328 | 270 | | × | 100 | 1840 | 366 | Х | Х | 25 | Х | 639 | 145 | 530 | 626 | 1310 | 524 | 1808 | 1082 | 726 | 400 | 440 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 791 | 150 | 642 | 942 | 353 | 960 | 328 | 270 | | | 125 | 1840 | 366 | Х | Х | 25 | Х | 738 | 175 | 530 | 626 | 1310 | 524 | 2073 | 1347 | 726 | 400 | 440 | 562 | 540 | 690 | M16 | 651 | 460 | 460 | 904 | 150 | 754 | 1192 | 479 | 960 | 328 | 270 | | | 50 | 1840 | 366 | Х | Х | 25 | Х | 595 | 101 | 530 | 626 | 1310 | 524 | 1672 | 946 | 726 | 434 | 484 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 763 | 150 | 614 | 845 | 190 | 960 | 328 | 270 | | ∢ | 65 | 1840 | 366 | Х | Х | 25 | Х | 611 | 117 | 530 | 626 | 1310 | 524 | 1695 | 969 | 726 | 434 | 484 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 636 | 150 | 487 | 845 | 292 | 960 | 328 | 270 | | 066 | 80 | 1840 | 366 | Х | Х | 25 | Х | 626 | 132 | 530 | 626 | 1310 | 524 | 1728 | 1002 | 726 | 434 | 484 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 687 | 150 | 538 | 875 | 313 | 960 | 328 | 270 | | Ϋ́ | 100 | 1840 | 366 | Х | Х | 25 | Х | 639 | 145 | 530 | 626 | 1310 | 524 | 1808 | 1082 | 726 | 434 | 484 | 494 | 540 | 690 | M16 | 651 | 460 | 460 | 791 | 150 | 642 | 942 | 353 | 960 | 328 | 270 | | | 125 | 1840 | 366 | Х | Х | 25 | Х | 738 | 175 | 530 | 626 | 1310 | 524 | 2073 | 1347 | 726 | 434 | 484 | 562 | 540 | 690 | M16 | 651 | 460 | 460 | 791 | 150 | 754 | 1192 | 479 | 960 | 328 | 270 | ## How to read the burner "Performance curve" To check if the burner is suitable for the boiler to which it must be installed, the following parameters are needed: - furnace input, in kW or kcal/h (kW = kcal/h/860); - backpressure (data are available on the boiler ID plate or in the user's manual). Example: Furnace input: 600kW Backpressure: 4 mbar In the "Performance curve" diagram, draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve. Data are referred to standard conditions: atmospheric pressure at 1013 mbar, ambient temperature at 15° C. #### **Performance Curves** To get the input in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15° C **NOTE:** The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjusting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum
output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum ## Checking the proper gas train size To check the proper gas train size, it is necessary to the available gas pressure value upstream the burner's gas valve. Then subtract the backpressure. The result is called **pgas**. Draw a vertical line matching the furnace input value (600kW, in the example), quoted on the x-axis, as far as intercepiting the network pressure curve, according to the installed gas train (DN65, in the example). From the interception point, draw an horizontal line as far as matching, on the y-axis, the value of pressure necessary to get the requested furnace input. This value must be lower or equal to the **pgas** value, calculated before. ## Pressure in the Network / gas flow rate curves (natural gas) ATTENTION: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis. The values in the diagrams refer to **natural gas** with a calorific value of 8125 kcal/Stm³ (15°C, 1013 mbar) and a density of 0.714 kg/Stm³. The values in the diagrams refer to **GPL** with a calorific value of 22300 kcal/Stm³ (15°C, 1013 mbar) and a density of 2.14 kg/Stm³. When the calorific value and the density change, the pressure values should be adjusted accordingly. $\Delta p2 = \Delta p1 + \left(\frac{Q2}{Q1}\right)^2 + \left(\frac{\rho 2}{\rho 1}\right)$ $p \ 1$ Natural gas pressure shown in diagram p 2 Real gas pressure $\hat{\,}_{Q\,1\,}$ Natural gas flow rate shown in diagram Q.2 Real gas flow rate $ho\,1$ Natural gas density shown in diagram $\rho 2$ Real gas density # Combustion head gas pressure curves Combustion head gas pressure depends on gas flow and combustion chamber backpressure. When backpressure is subtracted, i depends only on gas flow, provided combustion is properly adjusted, flue gases residual O2 percentage complies with "Recommendec combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the actuator are at the maximum opening. Refer to , showing the correct way to measure the gas pressure, considering the values o pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications. Note: the figure is indicative only. Key - 1 Generator - 2 Pressure outlet on the combustion chamber - 3 Gas pressure outlet on the butterfly valve - 4 Differential pressure gauge ATTENTION: THE BURNED GAS RATE MUST BE READ AT THE GAS FLOW METER. WHEN IT IS NOT POSSIBLE, THE USER CAN REFERS TO THE PRESSURE-RATE CURVES AS GENERAL INFORMATION ONLY. # Measuring gas pressure in the combustion head In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner. On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on # Pressure - rate in combustion head curves (natural gas) Curves are referred to pressure = 0 mbar in the combustion chamber! Gas pressure in combustion head The values in the diagrams refer to **natural gas** with a calorific value of 8125 kcal/Stm 3 (15°C, 1013 mbar) and a density of 0.714 kg/Stm 3 . The values in the diagrams refer to **GPL** with a calorific value of 22300 kcal/Stm³ (15°C, 1013 mbar) and a density of 2.14 kg/Stm³. When the calorific value and the density change, the pressure values should be adjusted accordingly. Where: $$\Delta p2 = \Delta p1 + \left(\frac{Q2}{Q1}\right)^2 + \left(\frac{\rho 2}{\rho 1}\right)$$ - $p\,1\,$ Natural gas pressure shown in diagram - p 2 Real gas pressure - Q1 Natural gas flow rate shown in diagram - \widetilde{Q}_2 Real gas flow rate - $ar{ ho}1$ Natural gas density shown in diagram - ρ_2 Real gas density #### **PART II: INSTALLATION** ## MOUNTING AND CONNECTING THE BURNER ### Transport and storage ATTENTION! The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. All handling operations must be carried out with appropriate resources and qualified personnel ATTENTION: Use intact and correctly dimensioned hoisting equipment, conforms to the local regulations and health and safety regulations. Do not stand under lifted loads. If the product must be stored, avoid humid and corrosive places. Observe the temperatures stated in the burner data table at the beginning of this manual. The packages containing the burners must be locked inside the means of transport in such a way as to guarantee the absence of dangerous movements and avoid any possible damage. In case of storage, the burners must be stored inside their packaging, in storerooms protected from the weather. Avoid humid or corrosive places and respect the temperatures indicated in the burner data table at the beginning of this manual. ## Packing The burners are despatched in wooden crates whose dimensions are: series 2100 mm x 1460 mm x 1060 mm (L x P x H) Packing cases of this type are affected by humidity and are not suitable for stacking. The following are placed in each packing case: - burner with detached gas train; - gasket or ceramic fibre plait (according to burner type) to be inserted between the burner and the boiler; - envelope containing this manual and other documents. - oil flexible hoses; ## Handling the burner WARNING! The handling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck. The burner is mounted on a support provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler. ## Fitting the burner to the boiler To perform the installation, proceed as follows: - 1 drill the furnace plateas decribed in paragraph ("Overall dimensions"); - 2 place the burner towards the furnace plate: lift and move the burner by means of its eyebolts placed on the top side (see"Lifting and moving the burner"); - 3 screw the stud bolts (5) in the plate holes, according to the burner's drilling plate described on paragraph "Overall dimensions"; - 4 place the ceramic fibre rope on the burner flange (if necessary, use a spray adhesive on the flange). - 5 install the burner into the boiler; - 6 fix the burner to the stud bolts, by means of the fixing nuts, according to the picture below. - After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). # Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the type of the blast tube. Verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube length follow the instructions of the boiler manufacturer. In absence of these consider the following: - Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than **Dist** = 100 mm into the combustion chamber. (please see the picture below) - Pressurised boilers with flame reversal: in this case the blast tube must penetrate Dm 50 ÷ 100 mm into combustion chamber in respect to the tube bundle plate.(please see the picture below) WARNING! Carefully seal the free space between blast tube and the refractory lining with ceramic fibre rope or other suitable means. The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer). **GAS TRAIN CONNECTIONS**The diagrams show the components of the gas train included in the delivery and which must be fitted by the installer. The diagrams are in compliance with the current laws. Procedure to install the double gas valve unit: - two (2) gas flanges are required; they may be threaded or flanged depending on size - first step: install the flanges to prevent entry of foreign bodies in the gas line - on the gas pipe, clean the already assembled parts and then install the valve unit - check gas flow direction: it must follow the arrow on the valve body - VGD20: make sure the O-rings are correctly positioned between the flanges and the valve - VGD40 and MBE: make sure the gaskets are correctly positioned between the flange - fasten all the components with screws, according to the following diagrams -
make sure bolts on the flanges are properly tightened WARNING: before executing the connections to the gas pipe network, be sure that the manual cutoff valves are closed. ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves). ATTENTION: once the gas train is mounted, the gas proving test must be performed, according to the procedure set by laws in force. To mount the gas train, proceed as follows: - 1 In case of threaded joints: use proper seals according to the gas used- in case of flanged joints: place a gasket between the elements - 2 Fasten all the items by means of screws, according to the diagrams showed, observing the mounting direction for each item NOTE: the bellows unit, the manual cutoff valve and the gaskets are not part of the standard supply ## MultiBloc MBE ATTENTION: once the gas train is mounted according, the gas proving test mus be performed, according to the procedure set by the laws in force. ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves). WARNING: Slowly open the fuel cock to avoid breaking the pressure regulator. # Threaded train with MultiBloc MBE - Mounting - 1. Insert studs A. - 2. Insert seals B. - 3. Insert studs C. - 4. Tighten studs in accordance with section 8. ## Ensure correct position of the seal! - 5. Perform leak and functional tests after mounting. - 6. Screws (4xM5x20) for VD assembly are supplied. - 1. Mount flange into pipe systems. Use appropriate sealing agent. - 2. Insert VB together with supplied O-rings. Check current position of O-rings. - 3. Tighten supplied screws (8xM8x30) in accordance with section 8. - 4. Screws (4xM5x25) for VD assembly are supplied. - 5. After installation, perform leakage and functional test. - 6. Disassembly in reverse order. Mounting position MBE / VB / VD # Mounting VD-R & PS-... 1. Gas pressure regulation is possible with VD-R and PS pressure sensor only. # WARNING! For US/CN installation, the output pressure must be monitoried by min. and max. pressure switches set to +/- 20% of the setpoint. - 2. Mounting on pipe. Sensor position: 5x DN according to MBE. Pipe fitting with female thread size ¼, mount sensor with seal, observe torque. - 3. The pressure sensor includes a vent limiter according to UL 353 and ANSI Z21.18/CSA 6.3. No venting required in locations where vent limiters are accepted by the jurisdiction. - 4. Only PS pressure sensors specified by DUNGS are authorised to be connected to the VD-R's M12 interface. - 5. Only PS cables specified by DUNGS are authorised to be used to connect the PS to the VD-R. Max. cable length 3 m. # Siemens VGD20.. e VGD40.. Siemens VGD20.. and VGD40.. gas valves - with SKP2.. (pressure governor) - Connect the reference gas pipe (**TP** in figure; 8mm-external size pipe supplied loose), to the gas pressure nipples placed on the gas pipe, downstream the gas valves: gas pressure must be measured at a distance that must be at least 5 times the pipe size. - Leave the blowhole free (**SA** in figure). Should the spring fitted not permit satisfactory regulation, ask one of our service centres for a suitable replacement. Caution: the SKP2 diaphragm D must be vertical WARNING: removing the four screws BS causes the device to be unserviceable! ## version with SKP2 (built-in pressure stabilizer) | Performance range (mbar) | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--| | neutral yellow red | | | | | | | | | | | | Spring colour SKP 25.0 0 ÷ 22 15 ÷ 120 100 ÷ 25 | | | | | | | | | | | | Spring colour SKP 25.4 7 ÷ 700 150 ÷ 1500 | | | | | | | | | | | ## Siemens VGD valves with SKP actuator: The pressure adjusting range, upstream the gas valves group, changes according to the spring provided with the valve group. To replace the spring supplied with the valve group, proceed as follows: - Remove the cap (T) - Unscrew the adjusting screw (VR) with a screwdriver - Replace the spring Stick the adhesive label for spring identification on the type plate. # Siemens VGD SKPx5 (Auxiliary-optional micro switch) ### **Actuator connection** # Gas valveGas Filter (if provided) The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burner valves, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices. ATTENTION: it is reccomended to install the filter with gas flow parallel to the floor in order to prevent dust fall on the safety valve during maintenance operation. Once the train is installed, connect the gas valves group and pressure switches plugs. # Integrated proving system (burners equipped with LME7x, LMV, LDU) This paragraph describes the integrated proving system operation sequence: - At the beginning both the valves (EV1 and EV2) must be closed. - Test space evacuating: EV2 valve (burner side) opens and keep this position for a preset time (td4), in order the bring the test space to ambient pressure. Test atmospheric pressure: EV2 closes and keep this position for a preset time (test time td1). The pressure switch PGCP has not to detect a rise of pressure. - Test space filling: EV1 opens and keep this position for a preset time (td3), in order to fill the test space. - Test gas pressure: EV1 closes and keep this position for a preset time (td2). The pressure switch PGCP has not to detect a pressure drop down. If all of the test phases are passed the proving system test is successful, if not a burner lockout happens. On LMV5x and LMV2x/3x and LME73 (except LME73.831BC), the valve proving can be parameterized to take place on startup, shutdown, or both. On LME73.831BC the valve proving is parameterized to take place on startup only. ## **OIL TRAIN CONNECTIONS** ## Hydraulic diagrams for light oil supplying circuits # Key - 1 Manual valve - 2 Light oil filter - 3 Light oil feeding pump - 4 One way valve - 5 Flexible hoses - 6 Relief valve **NOTE:** in plants where gravity or ring feed systems are provided, install an automatic interception device. # Installation diagram of light oil pipes please read carefully the "warnings" chapter at the beginning of this manual. Fig. 5 - Double-pipe system The burner is supplied with filter and flexible hoses, all the parts upstream the filter and downstream the return flexible hose, must be installed by the customer. As far as the hoses connection, see the related paragraph. ### Key - 1 Burner - 2 Flexible hoses (fitted) - 3 Light oil filter (fitted) - 4 Automatic interceptor (*) - 5 One-way valve (*) - 6 Gate valve - 7 Quick-closing gate-valve (outside the tank or boiler rooms) (*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing. The direct connection of the device without a timer may cause pump breaks. Depending on the installed pump, it is possible to design the plant for single or double pipe feeding line **Single-pipe system:** a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass plug, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. **Double-pipe system:** as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pump's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-ble-eding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-pipe systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug **G** (as for ccw-rotation- referring to the pump shaft). **Caution:** Changing the direction of rotation, all connections on top and side are reversed.**HP UHE series pumps**: a kit (Art.-Nr.: 0841211) is required for the transition from 2-pipe to 1-pipe system ## About the use of fuel pumps - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always
use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream the fuel unit. **ATTENTION**: before the burner first start, it is mandatory to fill the adduction pipes with diesel fuel and bleed out residual air bubbles. Prior to switching on the burner, check direction of rotation of the pump motor by briefly pressing the starter switch; ensure there are no anomalous sounds during equipment operation, and only then turn on the burner. Neglect to comply with this requirement will invalidate the burner warranty. | Suntec TA | | |-----------------------|----------------------------| | Oil viscosity | 3 ÷ 75 cSt | | Oil temperature | 0 ÷ 150°C | | Min. suction pressure | - 0.45 bar to avoid gasing | | Max. suction pressure | 5 bar | | Max. return pressure | 5 bar | | Rotation speed | 3600 rpm max. | - 1. Inlet G1/2 - 2. To the nozzle G1/2 - 3. Return G1/2 - 4. Pressure gauge port G1/4 - 5. Vacuum gauge port G1/4 - 6. Pressure governor ## Connecting the oil flexible hoses to the pump To connect the flexible oil hoses to the pump, proceed as follows, according to the pump provided: - 1 remove the closing nuts A and R on the inlet and return connections of the pump; - 2 screw the rotating nut of the two flexible hoses on the pump being careful to avoid exchanging the lines: see the arrows marked on the pump. For further information, refer to the technical documentation of the pump. ## . Diesel filters | • | | Item | Note | Connection | Max. operating
pressure | Max. operating
temperature | Filtering degree | Protec-
tion | |---|---|-------------|------|------------|----------------------------|-------------------------------|------------------|-----------------| | | 5 | 20151PE (*) | - | 3/8" | 1 bar | -20, 60 °C | 100 | - | | 2 | 6 | 20201PL (*) | - | 3/8" | 1 bar | -20, 60 °C | 100 | - | | | 7 | GA70501 | - | 1" | 4 bar | 90 °C | 100 | IP65 | (*) Supplied per pilot diesel fuel if present ## **ELECTRICAL CONNECTIONS** WARNING! Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. WARNING! before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section. ATTENTION: Connecting electrical supply wires to the burner teminal block MA, be sure that the ground wire is longer than phase and neutral ones. To execute the electrical connections, proceed as follows: - 1 remove the cover from the electrical board, unscrewing the fixing screws; - 2 execute the electrical connections to the supply terminal board as shown in the attached wiring diagrams; - 3 check the direction of the fan motor (see next paragraph); - 4 refit the panel cover. 5 WARNING: (only for double stage and progressive burners) The burner is provided with an electrical bridge between terminals 6 and 7; when connecting the high/low flame thermostat, remove this bridge before connecting the thermostat. #### Rotation of electric motor Once the electrical connection of the burner is executed, remember to check the rotation of the electric motor. The motor should rotate according to the "arrow" symbol on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor. CAUTION: check the motor thermal cut-out adjustment NOTE: the burners are supplied for three-phase 380 V or 400 V supply, and in the case of three-phase 220 V or 230 V supply it is necessary to modify the electrical connections into the terminal box of the electric motor and replace the overload tripped relay. ## Note on elecrtical supply In the case where the power supply of the AUXILIARIES of the phase-phase burner (without a neutral), for the flame detection it is necessary to connect the RC circuit Siemens between the terminal 2 (terminal X3-04-4 in case of LMV2x, LMV3x, LMV5x, LME7x) of the base and the earth terminal, RC466890660. For LMV5 control box, please refer to the clabeling recommendations avaible on the Siemens CD attached to the burner #### Key C - Capacitor (22 nF , 250 V) LME / LMV - Siemens control box R - Resistor (1M) M: Terminal 2 (LGB, LME), Terminal X3-04-4 (LMV2x, LMV3x, LMV5, LME7x) RC466890660 - RC Siemens filter # **BURNERS WITH INVERTER VARIANT (if provided)** # LMV2x/3xM-.MD.x.xx.x.x.xx.EB MG.MD.x.xx.x.x.xx.ED The LMV37.400/LMV26.300 electronic cam burners with fan motor driven by inverter in addition to the air and fuel adjustment curves also have a speed adjustment curve of the fan motor. The LMV equipment through a sensor controls the fan motor revolutions and with a signal in 0÷10V controls it through the inverter. Generally the curve of the inverter goes from 50% to 100% of the engine revolutions. This, in addition to improving the setting of the burner also allows a saving on the consumption of the fan engine. Two series of interchangeable Inverters version with Inverter FC101 and FC102 Danfoss FC102 Danfoss FC101 ## Terminal interface with Inverter # Braking resistances possibility of use only for FC102 #### **PART III: OPERATION** DANGER! Incorrect motor rotation can seriously damage property and injure people.WARNING: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed. DANGER: During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the gas decrease slowly until the normal combustion values are achieved.WARNING: never loose the sealed screws! otherwise, the device warranty will be immediately invalidate! #### LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE EXCEPT FOR ITS MAINTENANCE. TO SECURE THE MACHINE, ACT ON THE ISOLATOR SWITCH. IN CASE OF ANOMALIES THAT REQUIRED A SHUT DOWN OF THE BURNER, IT'S POSSIBLE TO ACT ON THE AUXILIARY LINE SWITCH, LOCATED ON THE BURNER FRONT PANEL. IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. #### K750A Fig. 5 - Burner front panel #### Keys - B1 Lock-out LED - B2 Hi-flame operation LED - B3 Lo-flame operation LED - B4 "Ignition transformer operation" LED - B7 Burner ignition LED - G1 "EV2 opening" LED - G2 "EV1 opening" LED - G3 "Gas pressure switch signal" LED - S2 Reset pushbutton for control box - S4 Fuel selection - S7 CMF switch (0=stop, 1=high flame,2=low flame, 3=automatic) fully modulating burners only - O3 "Pump motor overload tripped" LED - O4 Oil pump in operation LED - O5 Oil valve EVG operation signalling lamp - O7 Oil valve EVGS operation signalling lamp - A1 Burner Modulator (only on fully modulating burners) #### Fuel selection: • In order to start the burner with gas or light oil, the operator must commute the selector on the burner control panel on (1) = gas, or (2) = light oil. If the selector is set on (1) the gas cock must be open, while the light oil cock must be closed. Viceversa if the selector is set on (2). **CAUTION:** if the fuel chosen is oil, be sure the cutoff valves on the feed and return pipes are open. - Check the control box is not locked (signalling light B1, on); if so, reset it by means of the reset button. - Check the series of thermostats and pressure switches turn the burner to on. ## Gas operation - Check the gas feeding pressure is sufficient (signalling lamp G3 on). - Burners fitted with gas proving system: the gas proving system test begins; when the test is performed the proving system LED turns on. At the end of the test, the burner staring cycle begins: in case of leakage in a valve, the gas proving system stops the burner and the lamp **B1** turns on. **NOTE:** if the burner is fitted with Dungs VPS504, the pre-purgue phase starts once the gas proving system is successfully performed. Since the pre-purgue phase must be carried out with the maximum air rate, the control box drives the actuator opening and when the maximum opening position is achieved, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator drives the complete closing (ignition with gas position) and, as this is achieved the ignition transformer is energised (LED **B4** is on); the gas valves open. - Few seconds after the valves opening, the transformer is de-energised and lamp **B4** turns off. - The burner is now operating, meanwhile
the actuator goes to the high flame position and, after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by lamp B2 on the frontal panel. ## Light oil operation - The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator is in the light oil ignition position: the ignition transformer is energised (lamp **B4** on); the ignitor gas valves (if provided) and the light oil valves open. Few seconds after the valves opening, the transformer is de-energised and lamp **B4** turns off. - The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by LED **B2** on the burner control panel. The fuel is pushed into the pump to the nozzle at the delivery pressure set by the pressure governor. The solenoid valve stops the fuel immission into the combustion chamber. The fuel flow rate that is not burnt goes back to the tank through the return circuit. The nozzle is feeded at constant pressure, while the return line pressure is adjusted by means of the pressure governor controlled by an actuator. ## AIR FLOW AND FUEL ADJUSTMENT WARNING! During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the fuel decrease slowly until the normal combustion values are achieved. WARNING! the combustion air excess must be adjusted according to the values in the following chart. | Recommended combustion parameters | | | | | | | | | | | |-----------------------------------|---------------------------------|--------------------------------|--|--|--|--|--|--|--|--| | Fuel | Recommended (%) CO ₂ | Recommended (%) O ₂ | | | | | | | | | | Natural gas | 9 ÷ 10 | 3 ÷ 4.8 | | | | | | | | | | Light oil | 11.5 ÷ 13 | 2.9 ÷ 4.9 | | | | | | | | | | LPG | 11 ÷ 12 | 2.8 ÷ 4.3 | | | | | | | | | # Adjustments - brief description Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively. - Check that the combustion parameters are in the suggested limits. - .Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge. - Then, adjust the combustion values corresponding to the points between maximum and minimum: set the shape of the adjusting cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the throttle gas valve. - Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. ## ADJUSTMENTS FOR GAS OPERATION ## Adjustments - brief description - Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the valves group pressure stabiliser respectively. - Check that the combustion parameters are in the suggested limits. - Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head". - Then, adjust the combustion values corresponding to the points between maximum and minimum (progressive -fully modulating burners only): set the shape of the adjusting cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the air damper. - Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. To change the burner setting during the testing in the plant, follows the next procedure, according to the model provided. ## Air and Gas Flow Rate Settings by means of Berger STM30../Siemens SQM40.. actuator - 1 check the fan motor rotation. - Only for burners provided with **Multibloc MB-DLE gas valves**: before starting the burner up, set the slow opening. To set the slow opening, remove cover **T**, reverse it upside down and use it as a tool to rotate screw **VR**. Clockwise rotation reduces start flow rate, anticlockwise rotation increases it. Do not use a screwdriver on the screw **VR**! Note: the screw VSB must be removed only in case of replacemente of the coil. - 3 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage. - 4 Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the burner starts up; - 5 drive the burner to high flame stage, by means fo the thermostat **TAB**. - Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the gas by means of the valves group stabiliser. - 7 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps quoted below; - 9 acting on the pressure stabiliser of the valves group, adjust the gas flow rate in the high flame stage as to meet the values requested by the boiler/utilisation: - Siemens VGD valves group: remove cap T and act on the VR adjusting screw to increase or decrease the pressure and consequently the gas rate; screwind VR the rate increases, unscrewing it decreases (see next figure). Siemens VGD.. #### SQM40.265 Actuator cams To adjust the air flow rate in the high flame stage, loose the RA nut and screw VRA as to get the desired air flow rate: moving the rod TR towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases. Note: once the procedure is performed, be sure that the blocking nut RA is fasten. Do not change the position of the air damper rods. 10 If necessary, adjust the combustion head position (see the dedicated paragraph).. # Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above. - 11 The air and gas rate are now adjusted at the maximum power stage, go on with the point to point adjustement on the **SV1** (gas side) adjusting cam as to reach the minimum output point. - 12 as for the point-to-point regulation, move the gas low flame microswitch a little lower than the maximum position (90°); - 13 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position; - 14 move the gas low flame microswitch to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V1** to increase the rate, unscrew to decrease. Gas throttle valve open Gas throttle valve closed - 15 Move again the gas low flame microswitch towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point. - 16 Now adjust the pressure switches. 17 ## Fully-modulating burners .To adjust the fully-modulating burners, use the **CMF** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**. The **CMF** position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set CMF=2. $\mathsf{CMF} = \mathsf{0}$ stop at the current position CMF = 1 high flame operation CMF = 2 low flame operation CMF = 3 automatic operation # MultiBloc MBE Regulation VD-R whith PS ATTENTION: To set the outlet pressure of the VD-R regulator, act on the adjustment ring nut (Fig. 10) The position of the indicator in the dial indicates the value of the outlet pressure calculated as a percentage of the full scale of the PS sensor (Fig. 11) 150 "w.c. | Outlet pressure | MIN | 10% | 25% | 50% | 75% | MAX | |-----------------|---------|---------|----------|----------|----------|----------| | PS-10/40 | 4 mbar | 10 mbar | 25 mbar | 50 mbar | 75 mbar | 100 mbar | | | 0,4 kPa | 1,0 kPa | 2,5 kPa | 5,0 kPa | 7,5 kPa | 10,0 kPa | | | 2 "w.c. | 4 "w.c. | 10 "w.c. | 20 "w.c. | 30 "w.c. | 40 "w.c. | | PS-50/200 | 20 mbar | 50 mbar | 125 mbar | 250 mbar | 375 mbar | 500 mbar | | | 2,0 kPa | 5,0 kPa | 12,5 kPa | 25,0 kPa | 37,5 kPa | 50,0 kPa | 50 "w.c. 100 "w.c. 50% 10% 75% Max. 25% Adjusting output pressure for positive pressure systems (requires PS-10/40 or PS-50/200): # Pressure taps MultiBloc MBE 20 "w.c. 8 "w.c. ## Gas valveversion with SKP2 (built-in pressure stabilizer) To increase or decrease gas pressure, and therefore gas flow rate, remove the cap T and use a screwdriver to adjust the regulating screw VR. Turn clockwise to increase the flow rate, counterclockwise to reduce it. Fig. 7 200 "w.c. ## Calibration air and gas pressure switches The **air pressure switch** locks the control box if the air pressure is not the one requested. If it happens, unlock the burner by means of the control box
unlock pushbutton, placed on the burner control panel. The **gas pressure switches** check the pressure to avoid the burner operate when the pressure value is not in the requested pressure range. ## Calibration of low gas pressure switch As for the gas pressure switch calibration, proceed as follows: - Be sure that the filter is clean. - Remove the transparent plastic cap. - While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch. - Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the limits laid down by law, slowly open the cutoff valve as to get values lower than these limits. - Check that the burner is operating correctly. - Clockwise turn the pressure switch adjusting ring nut (as to increase the pressure value) until the burner stops. - Slowly fully open the manual cutoff valve. - Refit the transparent plastic cover on the pressure switch. ## Calibration the maximum gas pressure switch (when provided) To calibrate the maximum pressure switch, proceed as follows according to its mounting position: - remove the pressure switch plastic cover; - if the maximum pressure switch is mounted upstreaam the gas valves: measure the gas pressure in the network, when flame is off; by means of the adjusting ring nut VR, set the value read, increased by the 30%. - if the maximum pressure switch is mounted downstream the "gas governor-gas valves" group and upstream the butterfly valve: light the burner, adjust it according to the procedure in the previous paragrph. Then, measure the gas pressure at the operating flow rate, downstream the "gas governor-gas valves" group and upstream the butterfly valve; by means of the adjusting ring nut **VR**, set the value read on step 2, increased by the 30%; - replace the plastic cover. # Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: - Remove the transparent plastic cap. - Once air and fuel setting have been accomplished, startup the burner. - During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%. - Repeat the ignition cycle of the burner and check it runs properly. - Refit the transparent plastic cover on the pressure switch. # Calibration gas leakage pressure switch (PGCP) - remove the pressure switch plastic cover; - adjust the PGCP pressure switch to the same value set for the minimum gas pressure switch; - replace the plastic cover. # Adjusting the combustion head Attention! if it is necessary to change the head position, repeat the air and fuel adjustments described above. Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the **VB** screw and move progressively back the combustion head towards the MIN position, by turning clockwise the **VRT** ring nut. Fasten **VB** screw when the adjustment is accomplished. "MAX" head position "MIN" head position CAUTION: perform these adjustments once the burner is turned off and cooled. Atomisation angle # Adjustment procedure for light oil operation The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the below diagrams. # FLUIDICS NOZZLE: REFERENCE DIAGRAM (INDICATIVE ONLY) | DIMENSIONS | FLOW RATE kg/h | | Indicative | |------------|----------------|-----|----------------------------| | | Min | Max | pessure on
return (bar) | | 40 | 13 | 40 | 19 | | 50 | 16 | 50 | 22 | | 60 | 20 | 60 | 20 | | 70 | 23 | 70 | 23 | | 80 | 26 | 80 | 23 | | 90 | 30 | 90 | 22 | | 100 | 33 | 100 | 22 | | 115 | 38 | 115 | 21 | | 130 | 43 | 130 | 22 | | 145 | 48 | 145 | 21 | | 160 | 53 | 160 | 21 | | 180 | 59 | 180 | 22 | | 200 | 66 | 200 | 21 | | 225 | 74 | 225 | 22 | | 250 | 82 | 250 | 22 | | 275 | 91 | 275 | 22 | | 300 | 99 | 300 | 23 | | 330 | 109 | 330 | 23 | | 360 | 119 | 360 | 22 | | 400 | 132 | 400 | 22 | | 450 | 148 | 450 | 22 | | 500 | 165 | 500 | 22 | | 550 | 181 | 550 | 22 | | 600 | 198 | 600 | 23 | | 650 | 214 | 650 | 23 | | 700 | 231 | 700 | 23 | | 750 | 250 | 750 | 23 | | 800 | 267 | 800 | 22 | 50⁰ 70° NOZZLE SUPPLY PRESSURE = 25 bar - - - - - Atomisation angle according to the return pressure viscosity at nozzle = 5 cSt % Flow rate ATTENTION! To achieve the maximum flow rate close completely the return line. NOZZLE SUPPLY PRESSURE = 20 bar **Example (Bergonzo):** if a 220kg/h flow rate BERGONZO nozzle is provided, set the return pressure at 11bar, supply at 20bar on the delivery to get a 220kg/h flow rate. If the return pressure needed is 5bar, instead, act on the **V** adjusting screw on the pressure governor. The flow rate will then be about 95kg/h (see the example showed on the Bergonzo diagram). Fig. 9 # FLUIDICS KW3...60° # NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt # FLUIDICS KW3...60° ### NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt ### FLUIDICS KW3...60° #### NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt ### Oil Flow Rate Settings - 1 Once the air and gas flow rates are adjusted, turn the burner off, switch to the oil operation (OIL, on the burner control panel). - with the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged; 3 bleed the air from the **M** pressure gauge port (Fig. 7) by loosing the cap without removing it, then release the contactor. Fig. 10 - 4 As for setting the fuel/air ratio curve, see the LMV related manual. - Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 8 and act on on the pump adjusting screw **VR** (see Fig. 7) as to get the nozzle pressure at 20bar (Monarch or Fluidics nozzles see page 31-38). In order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge) without changing the air flow rate set during the gas operation adjustments (see previous paragraph), checking always the combustion parameters. Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. #### Minimum oil pressure switch (when provided) The minimum oil pressure switch on the inlet line, checks that the pressure does not drop below a default value. The pressure switch must be set, say, at 10% under the pressure at the nozzle. #### Maximum oil pressure switch The oil pressure switch on the return line, checks that the pressure does not exceed a default value. This value must not be higher than the maximum acceptable pressure on the return line (this value is reported on the specification table). A pressure change on the return line could affect the combustion parameters: for this reason, the pressure switch must be set, say, at 20% over the pressure recorded during the combustion adjustment. The factory setting is 4 bar. It is recommended to verify that the combustion parameters are within the range of acceptable values even against a pressure variation that gets close to the limit of the pressure switch. This check should be carried out along the whole range of the burner output. In case of inacceptable values, reduce from 20% to 15% the overpressure; later on, repeat the adjustments described above. ### Oil pressure switch adjustment Follow the below instruction, according to the pressure switch installed. ### Trafag Picostat 9B4.. #### **PART IV: MAINTENANCE** WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL. At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. #### ROUTINE MAINTENANCE - Check that the gas meter is not moving when the burner is off. In case it is rotating, look for possible leaks. - Check that all parts in contact with combustive air (air box, protection mesh and Archimedean screw) are clean and free from any obstruction that might impede free afflux. Clean it with compressed air if available and/or a dry brush or cloths. Eventually wash it with non corrosive detergents. - Check of blast tube; it must be substituted in case of obvious cracks or anomalous holes. Slight deformations that do not affect combustion may be tolerated - Check and clean the cartdrige of the fuel filter, replace it if necessary; - carefully check the fuel flexible hoses for leaks; - check and clean the filter on the fuel pump: bilter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced; - remove, check and clean the combustion head; - check the ignition electrodes and their ceramic insulators, clean, adjust and replace if necessary; - remove and clean the oil nozzles (IMPORTANT: do not clean the nozzles using metallic or sharp utensils, use only solvents or steam); at the end of maintenance operations, refit the burner, turn it on and check the combustion. If in doubt, replace the defective nozzle/s. In
case of intensive use of the burner, the nozzles must be replaced at the end of the working season; - examine and clean the detection electrode/photoelement (according to the burner models), replace it if necessary, in case of doubt, check the detection circuit, after the burner start-up; - clean and grease levers and rotating parts. - At least every 2 months, or more often if needed, clean the room where the burner is installed. - Avoid leaving installations, papers, nylon bags, etc., inside the room. They could be sucked by the burner and cause malfunctioning. - Check that the room's vents are free from obstructions. DANGER! Incorrect motor rotation can seriously damage property and injure people. ATTENTIONwhen servicing, if it was necessary to disassemble the gas train parts, remember to execute the gas proving test, once the gas train is reassembled, according to the procedure imposed by the law in force. #### Gas filter maintenance To clean or remove the filter, proceed as follows: - 1 remove the cap unscrewing the fixing screws (A); - 2 remove the filtering cartridge (B), clean it using water and soap, blow it with compressed air(or replace it, if necessary) - 3 replace the cartridge in its proper position taking care to place it inbetween the guides as not to hamper the cap replacement; - 4 be sure to replace the "O" ring into its place (C) and replace the cover fastening by the proper screws (A). WARNING: Before opening the filter, close the manual cutoff valve downstream the filter and bleed the gas; check that inside the filter there is no pressurised gas. # Thecnical procedure of self cleaning filters substitution (valid for all models) - 1 Close the bowl valve before the self cleaning filter - 2 Switch off any electrical equipment on board on the filter (example motorization or heaters) ### WARNING! Drain the system by unscrewing the drain screw on the bottom of the self cleaning filter - 3 Disconnect the outlet pipe from the cover of the self cleaning filter - 4 Remove the cover with all the filter pack, leaving only the bowl on the line - 5 Clean any residue on the bottom of the bowl and clean the seat of the O-ring seal #### WARNING! Replace the O-ring seal between the bowl and cover - 6 Insert the filter pack again making sure to respect the correct inlet/outlet direction or any references on the cover and tray - 7 Replace the filter by following the reverse order operations - 8 Make sure there is no leakage and give the power to any electrical equipmente on the filter # MultiBloc MBEMultiBloc VD Mounting - 1. Position VD on VB, fig. 2+3. - 2. Slide VD forward up to the stop, fig. 4. - 3. Screw VD on with 2 M5 screws for each, max. 5 Nm/44 in.-lb., fig. 5/6. - 4. VD can be mounted rotated by 180°, fig. 7. #### Removing the combustion head - 1 Remove the top **H**. - 2 Remove the **UV** detector out of its housing: disconnect electrode cables and the light oil flexible hoses. - 3 Loosen the screws V holding the gas manifold G, loosen the two connectors E and remove the assembly as shown. Note: to replace the combustion head, reverse the operations described above. 4 Clean the combustion head by means of a vacuum cleaner; scrape off the scale by means of a metallic brush. #### Key - 1 Inlet - 2 Return - 3 Gun opening - E Oil piping connections - H Cover - L Oil gun ### Electrodes Adjustment Important Note: Check the ignition and detection electrodes after removing/adjusting the combustion head. ATTENTION: avoid the ignition and detection electrodes to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrodes position after any intervention on the combustion head. Adjust the electrodes position, according to the quotes shown othe next picture #### Cleaning/replacing the electrodes ATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To remove the oil gun, proceed as follows: - 1 remove the combustion head as described on the prevoius paragraph; - 2 loosen the **VL** screw and remove the oil gun and the electrodes: check the oil gun, replace it if necessary; - 3 after removing the oil gun, unscrew the nozzle and replace it if necessary; - 4 in order to replace the electrodes, unscrew the **VE** fixing screws and remove them: place the new electrodes being careful to observe the measures showed on pag.: reassemble following the reversed procedure. Caution: adjust the nozzle position according to the air pipe, by means of the VU screw, ance the VL screw is fastened. #### Checking the detection current with electrode (natural gas) To check the detection signal follow the scheme in the picture below. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector. | Device | Flame detector | Minimum detection signal | |------------------|----------------|---------------------------------| | Siemens LMV2x/3x | QRA | 70 μA (intensity of flame >24%) | ### Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel valve of the supply line # Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". #### Burner service term - In optimal operating conditions, and with preventive maintenance, the burner can last up to 20 years. - Upon expiry of the burner service term, it is necessary to carry out a technical diagnosis and, if necessary, an overall repair. - The burner status is considered to be at its limit if it is technically impossible to continue using it due to non-compliance with safety requirements or a decrease in performance. - The owner makes the decision whether to finish using the burner, or replacing and disposing of it based on the actual state of the appliance and any repair costs. - The use of the burner for other purposes after the expiry of the terms of use is strictly prohibited. #### WIRING DIAGRAMS Refer to the attached wiring diagrams. #### **WARNING** - 1 Electrical supply 230V 50Hz 1 a.c./400V 50Hz 3N a.c. - 2 Do not reverse phase with neutral - 3 Ensure burner is properly earthed # **TROUBLESHOOTNG GUIDE Gas operation** | | as operation | * D | |---|--|---| | | * No electric power supply | * Restore power supply | | | * Main switch open | * Close switch | | | * Thermostats open | * Check set points and thermostat connections | | | * Bad thermostat set point or broken thermostat | * Reset or replace the thermostat | | BURNER DOESN'T LIGHT | * No gas pressure | * Restore gas pressure | | BURNER DOESN I LIGHT | * Safety devices (manually operated safety thermostat, pressure switches and so on) open | * Restore safety devices; wait till boiler reaches operating
temperature then check safety device functionality. | | | * Broken fuses | * Replace fuses. Check current absorption | | | | · · · · · · · · · · · · · · · · · · · | | | * Fan thermal contacts open (three phases motors only) | * Reset contacts and check current absorption | | | * Burner control lock out | * Reset and check its functionality | | | * Burner control damaged * Gas flow is too low | * Replace burner control | | | Cas now is too low | * Increase the gas flow * Check gas filter cleanness * Check butterfly valve opening when burner is starting (only Hi-Low flame and progressive) | | GAS LEAKAGE: BURNER LOCKS OUT | * Ignition electrodes discharge to ground because dirty or broken | * Clean or replace electrodes | | (NO FLAME) | * Bad electrodes setting | * Check electrodes position referring to instruction manual | | | * Electrical ignition cables damaged | * Replace cables | | | * Bad position of cables in the ignition transformer or into | * Improve the installation | | | the electrodes | | | | * Ignition transformer damaged | * Replace the transformer | | | * Bad flame detector set | | | | * Flame detector damaged | * Replace or adjust flame detector | | | * Bad cables of flame detector | * Check cables | | | * Burner control damaged | * Replace burner control | | BURNER LOCKS OUT WITH FLAME PRESENCE | * Phase and neutral
inverted | * Adjust connections | | | * Ground missing or damaged | * Check ground continuity | | | * Voltage on neutral | * Take off tension on neutral | | | * Too small flame (due to not much gas) | * Adjust gas flow
* Check gas filter cleanness | | | * Too much combustion air | * Adjust air flow rate | | only FOR LME22: BURNER CONTINUES TO PER- | * Air pressure switch damaged or bad links | * Check air pressure switch functions and links | | FORM ALL ITS FEATURES WITHOUT IGNITING THE BURNER | * Burner control damaged | * Replace burner control | | | * Gas valves don't open | * Check voltage on valves; if necessary replace valve or
the burner control * Check if the gas pressure is so high that the valve
cannot open | | | * Gas valves completely closed | * Open valves | | BURNER LOCKS OUT WITHOUT ANY GAS FLOW | * Pressure governor too closed | * Adjust the pressure governor | | | * Butterfly valve closed | * Open the butterfly valve | | | | | | | | | | | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact | * Check connection and functionality * Check connections * Check pressure switch functionality | | | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) | * Check connection and functionality * Check connections | | THE BURNER IS BLOCKED AND THE EQUIPMENT | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality | | THE BURNER IS BLOCKED AND THE EQUIPMENT PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE
SWITCH FAULT" | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE
SWITCH FAULT" | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set * Gas filter dirty | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT REPEATS THE STARTING CYCLE. BURNER STANDS WHILE RUNNING WITHOUT ANY | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set * Gas governor too low or damaged | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter * Reset or replace the governor * Reset contacts and check values | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT REPEATS THE STARTING CYCLE. BURNER STANDS WHILE RUNNING WITHOUT ANY | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas
pressure switch badly set * Gas governor too low or damaged * Thermal contacts of fan motor open | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter * Reset or replace the governor * Reset contacts and check values * Check current absorption | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT REPEATS THE STARTING CYCLE. BURNER STANDS WHILE RUNNING WITHOUT ANY SWITCHING OF THERMOSTATS | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set * Gas governor too low or damaged * Thermal contacts of fan motor open * Internal motor wiring broken | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter * Reset or replace the governor * Reset contacts and check values * Check current absorption * Replace wiring or complete motor | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT REPEATS THE STARTING CYCLE. BURNER STANDS WHILE RUNNING WITHOUT ANY SWITCHING OF THERMOSTATS | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set * Gas governor too low or damaged * Thermal contacts of fan motor open * Internal motor wiring broken * Fan motor starter broken * Fuses broken (three phases only) * Hi-low flame thermostat badly set or damaged | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter * Reset or replace the governor * Reset contacts and check values * Check current absorption * Replace wiring or complete motor * Replace starter * Replace fuses and check current absorption * Reset or replace thermostat | | PROVIDES A LOCK CODE "CAUSE AIR PRESSURE SWITCH FAULT" BURNER LOCKS OUT DURING NORMAL RUNNING THE BURNER STARTS AND AFTER A WHILE IT REPEATS THE STARTING CYCLE. BURNER STANDS WHILE RUNNING WITHOUT ANY SWITCHING OF THERMOSTATS FAN MOTOR DOESN'T START | * Maximum pressure switch open. * Air pressure switch doesn't close the NO contact * Air pressure switch damaged (it keeps the stand-by position or badly set) * Air pressure switch connections wrong * Air fan damaged * No power supply * Air damper too closed * Flame detector circuit interrupted * Burner control damaged * Maximum gas pressure switch damaged or badly set * Gas pressure switch badly set * Gas filter dirty * Gas governor too low or damaged * Thermal contacts of fan motor open * Internal motor wiring broken * Fan motor starter broken * Fuses broken (three phases only) | * Check connection and functionality * Check connections * Check pressure switch functionality * Check air pressure switch functionality * Reset air pressure switch functionality * Reset air pressure switch * Check connections * Replace motor * Reset power supply * Adjust air damper position * Check wiring * Check wiring * Check photocell * Replace burner control * Reset pressure switch or replace it * Reset the pressure switch * Clean gas filter * Reset or replace the governor * Reset contacts and check values * Check current absorption * Replace starter * Replace fuses and check current absorption | **TROUBLESHOOTNG GUIDE - Light oil operation** | | * No electric power supply | * Wait for electric power supply is back | |---|---|--| | , | * Main switch open | * Close the switch | | | * Thermostats open | * Check set points and thermostat connections | | | * Bad thermostat set point or broken thermostat | * Set or replace the thermostat | | BURNER DOESN'T LIGHT | * No gas pressure * Safety devices (manually operated safety thermostat or pressure switch, | * Restore gas pressure | | | and so on) open | * Restore safety devices; wait that boiler reaches its temperature th
check safety device functionality. | | | * Broken fuses | * Replace fuses. Check current absorption | | | * Fan thermal contacts open (only three phases) | * Reset contacts and check current absorption | | | * Burner control locked out | * Reset and check its functionality | | | * Burner control damaged | * Replace burner control | | | * Flame detector dirty or damaged | * Clean or replace flame detector | | | * Burner control damaged | * Replace burner control | | | * Smoking flame | * Reset combustion air flow rate | | BURNER LOCKS OUT WITH FLAME | | * Check the nozzle and, if necessary, replace it | | PRESENCE | | * Check cleanness of combustion head | | | | * Check chimney suction | | | * O and a client hand all the | * Check boiler cleanness | | | * Combustion head dirty | * Clean combustion head | | | * No fuel | * Fill the tank | | | * Pump joint broken | * Check pump pressure | | | * Pump damaged | * Check pump suction | | | | * Replace pump | | | * Compressed air (or steam) too high | * Released compressed air (or steam) pressure | | | * Oil metering valve not open far enough | * Check air pressure | | BURNER LOCKS OUT WITHOUT ANY | | * Check servomotor position | | FUEL FLOW RATE | * Oil valve not energized | * Check wiring path or replace valve | | | * Fan motor not efficient | * Adjust or replace the motor | | | * Fan or pump motor runs in the wrong way | * Change rotation | | | * Obstructed nozzle | * Clean or replace the nozzle | | | * Check valve in the tank locked or leaking | * Clean or replace the valve | | | * Oil filter dirty | * Clean filter | | | * Pump filter dirty | | | | * Solenoid valve dirty or broken | * Clean or replace solenoid valve | | | * Oil pressure too low | * Reset oil pressure | | | * Nozzle dirty or damaged | * Clean or replace nozzle | | | * Water in the tank | * Take off all the water from the tank | | | | * Clean all filters | | | | * Check suction before pump. If necessary clean filters. | | RATE (NO FLAME) | * Ignition electrodes grounded because dirty or damaged | * Clean or replace electrodes | | | * Ignition electrodes badly set | * Check electrodes position referring to instruction manual | | | * Cables damaged | * Replace cables | | | * Bad position of cables in the ignition transformer or into the electrodes | * Improve the installation | | | * Ignition transformer damaged | * Replace the transformer | | | * Suction too high (over 0,35 bar) (dirty filters, check valve in the tank locked, | * Clean filters * Replace check valve in the tank | |
 and so on) * Flexible hoses damaged | * Replace flexible hoses | | PUMP TOO NOISY | * Air infiltration in the pipes | * Take off all infiltration | | | * Pipe too long or too narrow | * Increase line size | | | Fipe too long of too flaffow
 * Burner is too lean | * Adjust air-oil ratio | | DUDNED DUMBLES WILEN MODULA | | | | BURNER RUMBLES WHEN MODULA-
TING TO HIGH FIRE | * Drawer assembly not set properly * Oil may be too hot | * Check drawer position * Check oil temperature | | TING TO HIGH FIRE | · · | * Check head position | | | I* Flame is blowing off head | I CHECK HEAD DOSIDON | | | * Flame is blowing off head | | | AADDON DUU D UD ON TUE EIDEONTO | * Oil flame not retaining to head | | | | * Oil flame not retaining to head * Dirty nozzle | * Clean the nozzle | | CARBON BUILD-UP ON THE FIRESIDES
OF THE BOILER | Oil flame not retaining to head Dirty nozzle Oil spray impinging on burner head | * Clean the nozzle * Check position of the nozzle respect to the head | | | Oil flame not retaining to head Dirty nozzle Oil spray impinging on burner head Spray angle of the nozzle too wide | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle | | | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure | | | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate | | | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters | | | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle | | OF THE BOILER | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser | | OF THE BOILER FLAME IRREGULAR OR SPARKING | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Nozzle dirty or damaged * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole
of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Nozzle dirty or damaged * Nozzle dirty or damaged * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Clean or, if necessary, replace the nozzle * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Clean or, if necessary, replace the nozzle * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Nozzle dirty or damaged * Nozzle dirty or famaged * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Chenge nozzle with a suitable one * Replace nozzle * Clean the boiler | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Not enough suction at chimney | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or,
if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Not enough suction at chimney * Pressure at nozzle too low | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size * Reset oil pressure | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Not enough suction at chimney | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size | | FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Pressure at nozzle too low * Oil too cold * Combustion air inlet dirty | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size * Reset oil pressure | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Not enough suction at chimney * Pressure at nozzle too low * Oil too cold | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Check burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size * Reset oil pressure * Reset oil temperature | | OF THE BOILER FLAME IRREGULAR OR SPARKING BURNER LIGHTS BUT FLAME DOESN'T RETAIN TO BURNER HEAD | * Oil flame not retaining to head * Dirty nozzle * Oil spray impinging on burner head * Spray angle of the nozzle too wide * Oil pressure at nozzle too low * Air flow rate too high * Oil is too cold * Dirt in the oil * Water in the fuel * Oil impingement on the combustion head * Nozzle dirty or damaged * Drawer assembly not positioned correctly * Nozzle too far forward through centerhole of diffuser * Oil or air pressure at nozzle is too low * Air louver too open * Too much spread between oil and air (or steam) pressure * Not enough combustion air * Nozzle dirty or damaged * Flame is too big for furnace or nozzle spray angle is wrong * Nozzle spray angle wrong (flame too long or too wide) * Boiler dirty * Pressure at nozzle too low * Oil too cold * Combustion air inlet dirty | * Clean the nozzle * Check position of the nozzle respect to the head * Reduce spray angle * Reset oil pressure * Adjust air flow rate * Adjust oil temperature * Check filters * Take off all the water * Drawer assembly far too rear * Nozzle is not protruding through centerhole of air diffuser * Oil flame not retaining to the head * Clean or, if necessary, replace the nozzle * Move forward or backward * Move nozzle backward respect to diffuser * Increase oil or air pressure * Reduce air louver opening * Set the spread to a proper value * Adjust air flow rate * Clean or, if necessary, replace the nozzle * Clean burner-furnace coupling * Change nozzle with a suitable one * Replace nozzle * Clean the boiler * Check chimney cleanness or size * Reset oil pressure * Reset oil temperature * Clean the air inlet | C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions excepted.